赤霉素 gibberellin
以ent-赤霉烷(gibberellane)为基本骨架的四环双萜的一种植物激素。由ent-贝壳杉烯(ka-urene)生物合成的。按照分离的顺序而定名为赤霉素A(缩写为GA)。现在已经鉴定出有四十种以上的赤霉素,但不一定所有的都具有生理效应。具有r-内酯的C19-GA及其前体C20-GA,是以结合型赤霉素而存在。 GA是从水稻恶苗病菌〔完全世代为Gi-bberella fujikuroi(Sawada)Wλ,不完全世代为Fusarium moniliforme Sheldon〕的培养液中分离出来的,是一种能引起稻苗徒长的物质,由黑泽英一在1926年发现的,后经薮田贞治郎和住木谕介(1928)获得结晶并命名。这种结晶的有效成分后来查明为GA1、GA2和GA3的混合物。有J.MacMilan和J.Suter(1958)从高等植物中分离得到GA1以来,到现在已得到20种以上,含有赤霉素的低等植物,在植物界也广泛存在。在高等植物中,赤霉素是在未成熟种子、顶芽和根等器官中合成的。GA的典型生理作用是能促进枝条的生长,尤其是能促进无伤害植物的整体生长。植物的矮化认为多半是由于体内的GA合成系统,在遗传上发生异常而造成的,为供给GA,则可以由矮化恢复正常。呈莲座状生长的植物,即使在非诱导的条件下,GA处理也能使其抽薹。对根的生长一般是没有效果的。GA促进生长的作用,认为是促进了细胞的分裂和细胞的伸长两个方面,但认为促进伸长的作用是与生长素的作用有密切关挑山工课文
战笔
系。此外,GA还具有打破种子和芽的休眠,促进长日照植物的开花,诱发葡萄等的单性结实,抑制某些种植物叶片老化等效应。在谷类种子的糊粉层中,能诱导a-淀粉酶(胚乳检定法)、核糖核酸酶和蛋白酶等水解酶的重新合成。孔子是哪里的
一会儿英语
赤霉素是一类属于双萜类化合物的植物激素。1926年日本病理学家黑泽在水稻恶苗病的研究中发现水稻植株发生徒长是由赤霉菌的分泌物所引起的。1935年日本薮田从水稻赤霉菌中分离出一种活性制品,并得到结晶,定名为赤霉素(GA)。第一种被分离鉴定的赤霉素称为赤霉酸(GA3),现已从高等植物和微生物中分离出70余种赤霉素。因为赤霉素都含有羧基,故呈酸性。内源赤霉素以游离和结合型两种形态存在,可以互相转化。
赤霉素pH值3~4的溶液中最稳定,pH值过高或过低都会使赤霉素变成无生理活性的伪赤霉素或赤霉烯酸。赤霉素的前体是贝壳杉烯。某些生长延缓剂,如阿莫-1618和矮壮素等能抑制贝壳杉烯的形成,福斯方-D能抑制贝壳杉烯转变为赤霉素。赤霉素在植物体内的形成部位一般是嫩叶、芽、幼根以及未成熟的种子等幼嫩组织。不同的赤霉素存在于各种植物不同的器官内。幼叶和嫩枝顶端形成的赤霉素通过韧皮部输出,根中生成的赤霉素通过木质部向上运输。
台球手势赤霉素中生理活性最强、研究最多的是GA3,它能显著地促进植物茎、叶生长,特别是对遗传型和生理型的矮生植物有明显的促进作用;能代替某些种子萌发所需要的光照和低温条件,从而促进发芽;可使长日照植物在短日照条件下开花,缩短生活周期;能诱导开花,增加瓜类的雄花数,诱导单性结实,提高坐果率,促进果实生长,延缓果实衰老。除此之外,GA3还可用于防止果皮腐烂;在棉花盛花期喷洒能减少蕾铃脱落;马铃薯浸种可打破休眠;大麦浸种可提高麦芽糖产量等等。
赤霉素很多生理效应与它调节植物组织内的核酸和蛋白质有关,它不仅能激活种子中的多种水解酶,还能促进新酶合成。研究最多的是GA3诱导大麦粒中α-淀粉酶生成的显著作用。另外还诱导蛋白酶、β-1,3-葡萄糖苷酶、核糖核酸酶的合成。赤霉素刺激茎伸长与核酸代谢有关,它首先作用于脱氧核糖核酸(DNA),使DNA活化,然后转录成信使核糖核酸(mRNA),从mRNA翻译成特定的蛋白质。 杨玉环死因
Gibberellin
Any of the members of a family of higher-plant hormones characterized by the ent-gibberellane skeleton. Some of the compounds have profound effects on many aspect
s of plant growth and development, which indicates an important regulatory role.关于心态的作文
There are two class of gibberellins: the 19-carbon gibberellins and the 20-carbon gibberellins. The 19-carbon gibberellins, formed from 20-carbon gibberellins, are the bio-logically active forms. Gibberellins also vary according to the position and number of hydroxyl groups linked to the carbon atoms of the ent-gibberellane skeleton. Hydroxylation has a profound influence on biological activity.
Probably the best-defined role for gibberellins in regulating the developmental process in higher plants is stem growth. The cellular basis for gibberellin-induced stem growth can be either an increa in the length of pith cells in the stem or primarily the production of a greater number of cells. Applied gibberellins can often promote germination of dormant eds, a capability suggesting that gibberellins are involved in the process of breaking dormancy. Gibberellins are intimately involved in other aspects of ed germination as well. Applied gibberellins promote or induce flowering in plants that require either cold or long days for flower induction. Gibberellin is probably not the flowering hormone or floral
stimulus, becau the floral stimulus appears to be identical or similar in all respon types. The application of gibberellins often modifies x expression, usually causing an increa in the number of male flowers. See also Dormancy; Flower; Plant growth; Seed.
Although gibberellins have limited u in agriculture compared with other agricultural chemicals such as herbicides, veral important applications have been developed, including the production of edless grapes. Application of gibberellin at bloom results in incread berry size and reduced berry rotting. Gibberellins are also ud to increa barley malt yields for brewing and to reduce the time necessary for the malting process to reach completion. Gibberellins have found significant applications in plant breeding. Other us for gibberellin in agriculture include reduction of rind discoloration in citrus fruits, incread yield in sugarcane, stimulation of fruit t in fruit trees, and incread petiole growth in celery. See also Plant hormones.