鸽巢问题应用题及答案

更新时间:2023-05-16 11:47:14 阅读: 评论:0

鸽巢问题应用题及答西瓜的生长过程案

《鸽巢问题》是内江一小提供的微课课程,主讲教师是陶映江。下面是收集整理的鸽巢问题应用题及答案,希望大家喜欢。

一、填空

1.把一些苹果平均放在3个抽屉里,总有一个抽屉至少放入几个呢?请完成下表:

考查目的:简单的抽屉原理。

答案:

解析:解决此类抽屉原理问题的一般思路为:放苹果最多的抽屉至少放进的个数=苹果个数除以抽屉数所得的商+1(有余数的情况下)。

2.研究发现,在抽屉原理的问题中,“抽屉”至少放入物体数的求法是用物体数除以( )数,当除得的商没有余数时,至少放入的物体数就等于( );当除得的商有余数时,至少放入的物体数就等于( )。

考查目的:解决简单抽屉原理问题的一般思路。

答案:抽屉;商;商+1。

解析:重点考查学生的归纳概括能力,加深对已学知识的理解。根据简单的抽屉原理:把多于个的物体放到个抽屉中,至少有一个抽屉里的东西的个数不少于2;把多于(乘以)个物体放到个抽屉中,至少有一个抽屉里有不少于(____)个物体。

3.箱子中有5个红球,4个白球,至少要取出( )个才能保证两种颜色的球都有,至少要取( )个才能保证有2个白球。

考查目的:灵活运用抽屉原理的知识解决问题。

答案:6;7。

解析:把两种颜色分别看作2个抽屉,考虑最差情况,5个红球全部取出来,那么再任意取出一个都是白球,所以至少取出6个才能保证两种颜色的球都有;要保证有2个白球,在取完所有红球的情况下再取2个即可。

4.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有( )个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有( )个小朋友才能保证两人拿的水果是相同的。

考查目的:排列与组合的知识;抽屉原理。

答案:7;11。

解析:在已知的四种水果中任意选择两种,共有6种不同的选择方法,那么至少要有7个小朋友才能保证有两个人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么共有10种不同的选择方法,至少要有11个小朋友才能保证有两人拿的水果相同。

5.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出( )顶帽子;要保证三种颜色都有,则至少应取出( )顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出( )顶。

考查目的:综合运用抽屉原理的知识解决问题。

答案:6;11;4。

解析:解答此题的关键是从极端的情况进行分析。假设取出的前5顶都是同一种颜色的帽子(把一种颜色取完),再取一顶就一定有两种颜色;(2)假设前10次取出的是前两种颜色的帽子(把两种颜色的帽子取完),再取出一顶,就能保证三种颜色都有;(3)把三种颜色看作三个抽屉,保证取出的帽子中至少有两个是同色的,至少应取4顶。

二、选择

1.把25枚棋子放入三角形内,那么一定有一个小三角形中至少放入( )枚。

A.6 B.7 C.8 D.9

考查目的:简单的抽屉原理。

答案:B。

解析:把大三角形中包含的4个小三角形看作4个抽屉,把25枚棋子放入其中,那么每个“抽屉”放入的物体数25÷4=6……1,所以不管怎么放,总有一个小三角形里至少放入6+1=7(枚)棋子。

2.某班有男生25人,女生18人,下面说法正确的是( )。

A.至少有2名男生是在同一个月出生的 B.至少有2名女生是在同一个月出生的

C.全班至少有5个人是在同一个月出生的 D.以上选项都有误

考查目的:用抽屉原理的知识解决实际问题。

答案:B。

解析:一年有12个月,因为25÷12=2……1,2+1=3,所以至少有3名男生是在同一个月出生的;18÷12=1……6,1+1=2,至少有2名女生是在同一个月出生的;43÷12=3……7,3+1=4,全班至少有4个人是在同一个月出生的。

3.某班48名同学投票选一名班长(每人只许投一票),候选人是小华、小红和小明三人,计票一段时间后的统计结果如下:

规定得票最多的人当选,那么后面的计票中小华至少还要得( )票才能当选?

A.6 B.7 C.8 D.9

考查目的:抽屉原理的实际应用。

答案:C。

解析:根据题意一共48票,已经计了30票,还有48-30=18票没计。现在小华得了13票,小红得了10票,只要小华得到的票数比小红多1票就能当选。(18-3)÷2=7……1,7+1=8,所以小华至少还要得8票才能当选。

4.学校有若干个足球、篮球和排球,体育老师让二(2)班52名同学到体育器材室拿球,每人最多拿2个(可以一个都不拿),那么至少有( )名同学拿球的情况完全相同。

A.8 B.6 C.4 D.2

考查目的:抽屉原理知识的综合应用。

答案:B。

解析:解决此题的关键是先求出抽屉数。根据“每人最多拿2个(可以一个都不拿)”共有10种不同的拿法,将其看作10个抽屉,则有52÷10=5……2,5+1=6(人)。即至少有6名同学拿球的情况是完全相同的。

5.如***,在小方格里最多场地平整施工方案放入一个“☆”,i的正确写法要想使得同一行、同一列或对角线上的三个小方格都不同时出现三个“☆”,那么在这九个小方格里最多能放入( )个“☆”。

A.4 B.5 C.6 D.7

考查目的:抽屉原理的变式练习。

答案:C。

解析:因为同一行、同一列或对角线上的三个小方领事馆和大使馆的区别格都不同时出现三个“☆”,且使小方格里的“☆”最多,所以每行每列都有2个“☆”,同时保证正方形的对角线上不同时出现三个“☆”即可(。

三、解答

1.某班同学为地震灾区小朋友捐献***书,所捐***书共分为故事书、科技树和教辅资料书三类,捐书的情况是:有捐一本的,有捐两本的,还有捐三本的。问至少要有几位同学来捐书才能保证一定有两位同关于感情的作文学所捐书的类型相同?(每种类型的书最多捐一本)

考查目的:综合运用排列组合、抽屉原理的知识解决实际问题。

答案:7+1=8(位)

答:至少要8位同学来捐书,才能保证一定有两位同学所捐书的类型相同。

解析:分析捐书的情况,捐一类的:故事书、科技书、教辅资料书共三种;捐两类的:故事书和科技书、故事书和教辅资料书,科技书和教辅资料书共三种;捐三类的是一种;总共有7种不同的捐法。把这7种情况看作7个抽屉,要保证有两位同学捐书的类型相同,只要8名同学即可。

2.在盒子中,小华蒙着眼睛往外摸球,至少要摸出多少个,才能保证摸出的球至少有3种不同的颜色?

考查目的:利用抽屉原理的知识解决实际问题。

答案:5+4+1=10(个)

答:至少要摸出10个球,才能保证有3种不同的颜色。

解析:因为各种颜色的球的数量有所不同,所以从“最差”的情况考虑:先摸出了5个绿球和4个黄球,只有2种颜色,此时再摸出任意一个球,都能保证摸出的球至少有3种不同的颜色。

3.扑克牌里学数学:一副扑克牌(取出两张王牌)。

(1)在剩下的52张牌中任意抽出9张,至少有多少张是同花色的?

(2)扑克牌一共有4种花色,每种花色都有13张牌,问至少要抽出几张牌才能保证有一张是红桃?

(3)至少要抽出多少张才能保证有5张牌是同一花色的?

考查目的:综合运用抽屉原理的知识解决实际问题。

答案:(1)9÷4=2……1 2+1=3(张)

答:至少有3张是同花色的。

(2)13×3+1=40(张)

答:至少要抽出40张牌才能保证有一张是红桃。

(3)4×4+1=17(张)

答:至少要抽出17张才能保证有5张牌是同一花色的。

解析:(1)任意抽出9张牌,假设每种花色的各有2张,剩下的一张不管是什么花色,都可以保证至少有3张是同花色的;

(2)要保证有一张是红桃,考虑到最差情况,将不是红桃的牌都抽光,只要再抽一张就一定是红桃;

(3)要保证5张是同花色的,可以假设4种花色的都抽取了4张,只要再抽一张即可。

4.在下面的方格中,将每一个方格涂上红色或黄色,不论怎么涂,至少有几列的颜色是完全相同的?

考查目的:利用抽屉原理的知识解决问题。

答案:9÷4=2……1 2+1=3(列)

答:不论如何涂色,至少有3列的颜色是完全相同的。

解析:每一列有四种不同的涂法,将9列看作9个物体,四种不同的涂法看成4个抽屉,9÷4=2……1,即每种涂色的方法各涂出2列后,还剩下1列,所以至少有2+1=3(列)的颜色是完全相同的。

5.小花猫钓到了鲤鱼、草鱼、鲫鱼三种鱼共12条,放在桶里提回家去,路上遇见了小白猫,小花猫问小白猫:“你最爱吃什么鱼?”小白猫说:“我最爱吃的是鲤鱼。”小花猫说:“好,你只要从我的桶里随便拿出3条鱼来,就一定会有你最爱吃的鲤鱼,不过你得先告诉我,我一共钓了几条鲤鱼?”小白猫说了一个数,并从桶里拿出3条鱼,果然有鲤鱼,小花猫把1条鲤鱼送给了小白猫。那么,小花猫到底钓到了几条鲤鱼呢?

考查目的:利用抽屉原理的知识解决问题;培养学生数学阅读的能力。

答案:12-(3-1)=10(条)

答:小花猫钓到了10条鲤鱼。

解析:从最不利的.情况考虑爱慕的反义词,先拿出的2条鱼都不是鲤鱼,要满足“拿出3条鱼来,就一定会有你最爱吃的鲤鱼”,说明不能再有草鱼和鲫鱼,所以草鱼、鲫鱼这两种鱼加起来最多只有两条,剩下的全部都是鲤鱼。

拓展

三角函数公式总结

一、教学内容:

教科书第68页例1。

二、教学目标:

(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过***思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

三、教学重难点

教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

四、教学准备:多媒体课件。

五、教学过程

(一)候课阅读分享:

同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

(二)激情导课

好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

(三)民主导学

1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

请你再把题读一次,这是为什么呢?

要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。我们再思考这一句话中,总有和至少是什么意思?

对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

那你能现在说说,总有一个笔筒里至少有两新学期新气象黑板报内容支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。你说对了吗?

课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!

方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

方法二:用“假设法”证明。

对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)

方法三:列式计算

你能用算式表示这个方法吗?

学生列出式子并说一说算式中商与余数各表示什么意思?

2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

这道题大家可以用几种方法解答呢?

3种,枚举法、假设法、列式计算。

3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候元宵节的英语介绍用起来比较麻烦。可以用假设法和列式计算。

4、表格中通过整理,总结规律

你发现了什么规律?

当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

5、简单了解鸽巢问题的由来。

经过刚才的探索研究,牙痛吃什么药最管用我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

(四)检测导结

好,我们做几道题检测一下你们的学习效果。

1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

4、育新小学全校共有2192名学生,其中一年级新生有367名同学是2008年出生的,这个学校一年级学生2008年出生的同学中,至少有几个人出生在同一天?

(五)全课总结今天你有什么收获呢?

(六)布置作业

作业:两导两练第70页、71页实践应用1、4题。

本文发布于:2023-05-16 11:47:14,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/763338.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:应用题   答案
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图