三角形教学设计
作为一位优秀的人民教师,编写教学设计是必不可少的,借助教学设计可使学生在单位时间内能够学到更多的知识。教学设计应该怎么写呢?以下是帮大家整理的三角形教学设计,仅供参考,大家一起来看看吧。
设计思路:
根据幼儿活泼好动,喜欢摆弄物品的特点,我为幼儿提供了小棒、***形、彩纸等大量活动材料,让幼儿在玩中学、学中乐,乐中做,启发幼儿主动探索、发现三角形的特征,培养幼儿的创新意识,使幼儿养成动手、动脑、动口的好习惯。
活动目标:
1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征;
2、培养幼儿的动手操作能力,发展幼儿思维的灵活性;
3、初步培养幼儿的创新意识和实践能力。
活动准备:
1、长短不同的小棒若干,总数是幼儿人数的6倍;
2、三角形卡片若干;
3、红领巾、小房子、小旗子等三角形实物若干;
4、彩纸、铅笔、橡皮、剪刀每人一份。
活动过程:
一、探索操作:
1、在正方形拼***的基础上,请幼儿任意拿3根小棒拼摆***形。幼儿探索活动,教师指导。
2、请个幼儿说一说,摆得什么样的***形,用了几根小棒,有几个角;
3、师生共同拼***,并点数***形的边、角;
小结:有3条边、3个角的***形叫三角形。丰富词汇:三角形。
二、探索感知:
1、请幼儿任意取出一个三角形卡片,点数它有几个条边、几个角?
2、出示各种不同的三角形,引导幼儿观察其不同点,相同点。
不同点:有的大、有的小、有的角尖、有的角大……
相同点:都有3个角、3条边。
3、小结:不管***形大小,不管角尖,只要有3条边、3个角的***形都是三角形。
三、找一找、想一想、说一说
1、引导幼儿在环境中找出象三角形的物体(小彩旗、红领巾)。
2、请幼儿想一想、说一说,见过的象三角形的物体
四、做一做、试一试剪裁三角形并拼***
1、教师引导幼儿用各种方法剪裁出任意三角形(剪、撕、画等),培养幼儿的创新意识
2、鼓励幼儿用剪出的三角形拼出自己喜爱的动物或物品的形象。
五、自我评价,展览幼儿作品。
教学内容:
义务教育课程标准实验教科书江苏(国标)四年级数学下册第22——24页《三角形的认识》
教学目标:
八步螳螂拳1.让学生在观察、操作和交流等活动中,经历三角形的认识过程,并认识三角形各部分名称。
2.明白三角形三条边的长度关系,感受到三角形两边之和大于第三边。
3.感受三角形的底和高,并能正确测量底和高。
4.体验三角形的稳定性在生活中的广泛应用,感受几何***形与现实生活的密切联系。
教学重点:
理解三角形的特性;掌握三角形三边关系定理。
教学难点:
理解三角形高和底的含义,会在三角形内测量底和高。
教学准备:
多媒体课件、长方形、正方形、三角形学具、小棒、钉子板、直尺、三角形
教学过程:
一、联系实际,引出课题感知三角形
1.出示一条红领巾让学生说说有什么特征?
(是三角形,有三条边,三个角)
教师小结:同学们说得都对红领巾的形状就是三角形。今天我们就一起来学习三角形,认识三角形的基本特征。
2.学生汇报交流自己收集到的有关三角形信息。
3.教师展示三角形在生活中应用的***片。
谈话引出课题:“你想学习有关三角形的什么知识呢?(板书课题:三角形的认识。)
二、动手操作,探索新知
1.动手制作三角形,概括三角形定义。
(1)学生利用老师提供的材料动手操作,选择自己喜欢的方式做一个三角形。(制作材料:小棒、钉子板、直尺、三角板。)
(2)学生展示交流制作的三角形,并说说自己是怎么做的。
(3)观察思考:这些三角形有什么相同地方?
(4)认识三角形组成,初步概括三角形定义。
(5)教师出示有关***形,引起学生质疑,通过学生思考讨论,正确概括出三角形定义。
归纳并板书:
相同点:都有有三条边,三个角,三个顶点。
不同点:角的大小不相同,边的长短不相等。
(6)完成“想想做做”1,学生画好后,说说三角形的特征。
2.教学例题。
(1)任意选三根小棒能围成一个三角形吗?
学生先猜。
教师:光猜可不行,知识是科学,咱们来动手围一围。
学生动手围,集体交流:有的能围成,有的不能围成。
教师请能围成和不能围成的同学分别上来展示一下。
同时板贴:能围成三角形不能围成三角形
教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。
提出问题:那么,能围还是不能围,跟三角形的什么有关系呢?
引导学生明白:跟三角形的边有关系。
教师:对,三角形的边有什么样的关系呢?
(2).动手操作。
电脑出示:现有两根小棒,一根长4厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形?
教师说明操作要求,学生活动,教师巡视指导。
教师:下面就请同学们来汇报一下你的操作结果。
请不同的学生汇报,教师及时点评。
[设计意***:既然已经知道能否围成一个三角形,与三角形的边有关系,所以教师先给出学生两根6厘米和4厘米的小棒,让学生通过动手操作得到,当第三边是几厘米的时候能围成三角形,直观明了,为后面的探究打好基础。]
(3).集体探究。
第一层次:发现不能围成的原因。
①教师:同学们通过动手实践,发现1厘米的小棒不能围,确定吗?咱们再来验证一下。
课件演示:当三根小棒分别是1厘米、4厘米和6厘米的时候,围不成三角形。
教师:为什么围不成?你会用一个数学关系式表示出它们的关系吗?
引导学生得出:1+4<6,所以围不成。
②教师:下面我们再来验证一下2厘米。课件演示。
教师:你发现了什么?会用一个数学关系式表示出它们的关系吗?
引导学生说出:2+4=6,所以不能围。
板书(补上小于等于号):两边之和≤第三边不能围成三角形
[设计意***:学生已经有了操作的初步体验,但是不能围成的原因是什么,却还没有发现。这里,通过课件直观、生动的演示和教师及时的启发、点拨,学生便会很快的发现不能围成三角形的原因了。]
第二个层次:猜想,初步得出三角形边的性质。
教师:两边之和小于或者等于第三边,不能围成三角形。同学们猜想一下,什么情况下能围成三角形呢?
学生猜出:两边之和大于第三边。
板贴:两边之和>第三边能围成三角形?
同时,教师在旁边画上“?”
初步验证猜想:
教师:这个猜想对不对呢?这需要进行验证。看看这些能围成三角形的边,是不是具备这样的关系?
教师指着3厘米,问:当第三根小棒是3厘米的时候,谁能来说一说?
同时课件进行演示,得出:3+4>6。课件演示。
教师点击:那么下面就依次类推了。课件依次出现算式:4+4>65+4>66+4>67+4>68+4>69+4>610+4>6
[设计意***:由于有了“两边之和≤第三边,不能围成三角形”这个结论作基础,学生会自然而然地想到当“两边之和大于第三边”的时候就能围成三角形。这时教师及时说明,这只是猜想,要经过验证才能判断它是否正确。]
第三个层次:引发矛盾,突破难点。
教师指着表格,质疑:你们有没有发现问题啊?咱们在动手操作的时候得出10厘米不能围,可是10+4>6呀,这符合我们刚刚得出的结论啊?
教学目标
一、教学知识点
1、三角形全等的“边边边”的条件。
2、了解三角形的稳定性。
二、能力训练要求
1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
2、掌握三角形全等的“边边边”的条件,了解三角形的稳定性。
3、在探索三角形全等的条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
三、情感与价值观要求
1、使学生在自主探索三角形全等的条件的过程中,经历画***、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验。
2、让学生体验数学来源于生活,服务于生活的辩证思想。
教学重点
三角形全等的条件
教学难点
三角形全等的条件
教学方法
动手操作、讨论、引导教学法
教具准备
多媒体投影、一幅三角尺、量角器
教学过程
一、创设问题情景,引入新课
1、复习提问:什么样的两个三角形是全等三角形?全等三角形有什么特征?
答:能够完全重合的两个三角形是全等三角形。全等三角形的对应边相等,对应角相等。
2、已知:如***,△ABC≌△DEF,请找出***中的对应边和对应角。
答:AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F。
3、若有一个三角形纸片,你能画一个三角形与它全等吗?如何画?
答:能,先量出这个三角形纸片的每边的长,各个角的度数,然后作出一个三角形,使它的每边长,每个角的度数分别等于已知三角形纸片的每边长,每个角,这样作出三角形一定与已知三角形纸片全等。
4、如上***,△ABC与△DEF满足上述六个条件的全部可以使△ABC与△DEF全等。如果满足上述六个条件中的一部分是否能保证△ABC与△DEF全等?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?
这节课就来探索三角形全等的条件。
二、新课讲授
1、只给出一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?
2、给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?
⑴、给出一个内角,一条边;⑵、给出两个内角;⑶、给出两条边。
分别按照下面的条件做一做:
⑴、三角形一个内角为30°,⑵、三角形的两个内角⑶三角形的两条边
一条边为3cm;分别为30°和50°;分别为4cm,6cm。
结论:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等。
〔注解〕:若给出的条件能够使两个三角形全等,则班上所有同学所作的三角形都应该全等;若给出的条件不能使两个三角形全等,只要按照同一要求作***,只要有两位同学作的三角形不全等,即可以说明给出的条件不能使两个三角形全等。特别地,只要能举出相关的反例能说明两个三角形不全等,可以适当减少作***环节。
3、如果给出三个条件画三角形,你能说出有哪几种可能的情况?
⑴、都给角:给三个角;⑵、都给边:给三条边;
⑶、既给角,又给边:①给一条边,两个角;②给两条边,一个角。
按照下面的条件做一做:
⑴、已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?
把你画的三角形与同伴画的进行比较,它们一定全等吗?
结论:三个内角对应相等的两个三角形不一定全等。
⑵、已知一个三角形的三条边分别为4cm、5cm和7cm,你能画出这个三角形吗?
把你画的三角形与同伴画的进行比较,它们一定全等吗?
结论:边边边公理
三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
AB=DE
AC=DF△ABC≌△DEF(SSS)
BC=EF
注意:三边对应相等是前提条件,三角形全等是结论。
5、由上面结论可知,只要三角形三边长度确定了,这个三角形的形状和大小就完全确定了。
如***,是用三根长度适当的木条钉成一个三角形框架,所得框架的形状固定吗?用四根木条钉成的框架的形状固定吗?
三角形框架形状和大小是固定不变的,四边形框架形状是可以改变的。
三角形具有稳定性;四边形不具有稳定性。
举例说明生活中经常会看到应用三角形稳定性的例子?(投影片)
三、例题与练习
例1如***,当AB=CD,BC=DA时,***中的△ABC与△CDA是否全等?并说明理由。
答:△ABC与△CDA是全等三角形。
证明:在△ABC与△CDA中
AB=CD(已知)
∵AD=CB(已知)
AC=CA(公共边)
∴△ABC≌△CDA(SSS)
例2变式题如***,当AB=CD,BC=DA时,你能说明AB与CD、AD与BC的位置关系吗?为什么?
答:能判定AB∥CD
证明:在△ABC与△CDA中
AB=CD(已知)
∵AD=CB(已知)
AC=CA(公共边)
∴△ABC≌△CDA(SSS)
∴∠3=∠4,∠1=∠2(全等三角形对应角相等)
∴AB∥CD,AD∥BC(内错角相等,两直线平行)
四、课堂小结
1、通过这节课的学习活动你有哪些收获?
(1)只给出一个条件或两个条件时,都不能保证两个三角形一定全等。
(2)三个内角对应相等的两个三角形不一定全等。
(3)边边边公理:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(4)三角形具有稳定性,四边形不具有稳定性。
2、你还有什么想法吗?
五、作业
课本第160页,习题5.7数学理解第1、2题;问题解决第1题
六、板书设计
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
AB=DE
AC=DF△ABC≌△DEF(SSS)
BC=EF
2、三角形具有稳定性。
教学目标
及重点难点
使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积
教学准备(含资料辑录或***表绘制)
板书设计
教后记
教和学的过红枣粽子程
内容教师活动学生活动
一、练习
二、总结一、第5题
可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题
要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题
测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。
【活动目标】
1.认识三角形的特征,知道三角形由3条边,三个角。
2.能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。
3.发展幼儿观察力,空间想象力。
【活动准备】
1.PPT一份,大三角板一个,长短不同的小棒,雪糕棒等
【活动过程】
一.导入:手指游戏:快乐的小鱼
二.学习三角形特征
1、认识三角形
(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。123,请出来。
(PPT出现一根红色的魔法线)提问:它是什么颜色的?
(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线。
(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)
(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。
(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。
2、巩固三角形特征
(1)引导幼儿观察***形,发现三角形的特征。
前几天张老师去旅游。到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的,老师把他拍了下来今天和你们一起来分享(继续看PPT,出示各种各样的三角形物品)A钟表店B食品店C帽子店
(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)
(3)引导幼儿在活动室里找一找三角形的物品
3、老师小结三角形特征,使幼儿获得的知识完整化。(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的***形都是三角形。
三.复习三角形的特征提供冰糕棒、小木棒供幼儿拼三角形,巩固认识其三角形。
【活动反思】
小班幼儿的思维是具体形象思维,用变魔术的形式引出开头吸引孩的注意,通过变一边、摸一摸、看一看、找一找、摆一摆等,做了三角形等一系列活动,使每位幼儿在广阔的活动和认识空间在拼拼摆摆的过程中加深对三角形的认识,老师及时的小结使孩子获得知识的完整性。虽然生活中属于三角形的物体少一些,但孩子们能积极参与并观察,找到了好多的环境中的三角形。
教学目标:
1、知识与技能:
(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的推导过程。
教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。
教具准备:红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备: 每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。
教学过程:
一、创设情境,揭示课题
师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗? (把红领巾展开贴在黑板上)
教师提出问题:
⑴红领巾是什么形状的?(三角形)。
⑵你会算三角形的面积吗?
师:这节课我们一起来学习探索三角形面积的计算方法。
板书:三角形的面积
[设计意***:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]
二、探索新知
1、寻找思路:(出示一个长方形)
师:(1)长方形面积怎样计算?
(2)怎样可以把这个长方形平均分成两份?
有三种方法:
方法一:方法二: 方法三:
师:方法三中把长方形平均分成两个三角形,大小有什么关系?(完全一样)
每个三角形面积与原长方形的面积有什么关系?
[设计意***:通过把长方形平均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]
生:长方形的面积=长×宽
生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。
板书:三角形的面积=底×高÷2(直角三角形)
师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一齐来探讨。上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的***形来求面积呢?(挂出课本84页主题***让学生观察、引发思考)
接着出示思考题:
(1)将三角形转化成学过的什么***形?
(2)每个三角形与转化后的***形有什么关系?
[设计意***:学生已经学习了平行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的***形来求它的面积呢?在讲授公式来由之前,以动手把长方形平分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]
2、分组操作、讨论,合作学习。
(1)提出操作和思考要求。
学生用课前准备的三种类型三角形(完全一样的各两个),四人为一小组合作动手拼一拼、摆一摆。
小黑板出示讨论问题:
①用两个完全一样的三角形拼一拼,能拼出什么***形?
②拼出的***形的面积你会计算吗?
③拼出的***形与原来三角形有什么联系?
(2)学生以“四人小组”为单位进行操作和讨论。
[设计意***:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形的面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又中从找到对应关系,渗透了对应关系的教学。]
平移
旋转180°
合拼
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学生:你是怎样拼的?能说一说你的拼法吗?(如果学生操作有困难,教师可以适当引导学生操作:摆出两个完全一样的三角形,把其一个三角形旋转、移动,和另一个三角形拼成一个平行四边形。如***,让学生模仿练习)
[设计意***:让学生找到了新旧知识的连接点与转化方式,使学生正确掌握操作方法,要求学生表述操作过程,规范学生的数学语言,培养学生的口述能力,提高学生的操作技能。]
(3)学生上讲台板演。
①小组汇报实验情况。(让学生将转化后的***形贴在黑板上,然后口述操作过程。)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形) (两钝角三角形) (两直角三角形)
平行四边形平行四边形长方形
②学生演示:用旋转平移的方法将三角形转化成各种已学过的***形。
师:通过动手操作,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都可以拼成一个平行四边形。(或长方形)
师:每个三角形的面积与拼成的平行四边形的面积有什么关系?
生:每个三角形的面积是拼成的平行四边形的面积的一半。
生:拼成的平行四边形是每个三角形面积的二倍。(教师给予评价、肯定)
[设计意***:通过动手操作和小组合作学习,再观察演示使同学们更具体、清晰地弄清了将两个完全一样的三角形拼成平行四边形后,它们之间到底有什么关系。让学生通过推导,增强学生探索的兴趣,提高学生推理的能力。]
3、讨论与归纳公式
(1)讨论:(小黑板出示问题)
①、三角形的底和高与平行四边形的底和高有什么关系?
②、怎样求三角形的面积?
③、你能归纳出三角形的面积计算公式吗?
[设计意***:借助***形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]
(2)归纳公式。
学生讨论、汇报:
因为:三角形面积=拼成的平行四边形面积÷2
所以:三角形面积=底×高÷2
教师板书:三角形面积=底×高÷2
师:为什么要除以2?
生:因为是两个完全一样的三角形拼成一个平行四边形,所以三角形的面积是拼成的平行四边形面积的一半
师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母麦哲伦海峡写出三角形的面积公式吗?
结合学生回答,教师板书:s=ah÷2
[设计意***:把求三角形的面积转化成已学习过的平行四边形面积,找到它们之间的关系,使学生感知了三角形面积的计算后,去讨论:“三角形面积的计算公式是怎样的?” “为什么要除以2?”以先入为主,从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,突破教学的重点和难点,增强学生探究的兴趣、提高学生推理的能力,培养学生的抽象概括能力。]
4、看书质疑。
师:你能说说,课本中是怎样得出三角形的面积计算公式的?
(充分利用好教材,学生加深对知识的认知,养成看书的良好习惯。)
师:除了用两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你还能用别的方法去推导三角形的面积公式吗?
如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。(略讲)
三、应用新知,解决问题
师:现在同学们能帮老师解决问题了吗?
1、计算一条红领巾的面积。
师:你能估算出这条红领巾的底和高各是多少吗?
生:……
师:这条红领巾的底是100cm,高是33cm,你能计算出它的面积是多少吗?
学生***完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。
师:计算三角形的面积,应注意什么地方?(强调“÷2”和“底和高要对应”这两个重点、难点。)
12.5 cm
2、***完成p85做一做。
学生板演,教师点评。
[设计意***:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]
四、深化理解、应用拓展
1、课本86页的练习第1题。 (课件出示)
师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?
(让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)
2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。
师:要求上面每个三角形的面积,需要知道什么条件呢?要怎么做?
(先让学生想,再请学生口头叙述,最后让学生动手操作计算、评讲,培养学生的数学语言表达能力。)
3、判断题
(1)三角形面积是平行四边形面积的一半。 ( )
(2)一个平行四边形面积是40平方米,与它等底等高三角形面积为20平方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。 ( )
(4)等底等高的两个三角形,面积一定相等。 ( )
(5)两个三角形一定可以拼成一个平行四边形。 ( )
4dm
2。5dm
3dm
4、求右***三角形面积。
(要计算上***的三角形面积,强调三角形的底和高一定是对应的。)
5、课本86页第3题:已知一个三角形的面积和底
(如右***),求高。
师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?
(生讨论汇报,再计算、反馈。)
6、做课本86页第4题(然后汇报、评讲。)
要在公路中间的一块三角形空地(见下***)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?
[设计意***:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]
五、总结
师:今天这节课,我们主要学习了什么知识?你有什么收获?
(小出示)让学生说一说***意:
生:……
师:很好!今天我们通过分“四人小组”动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“转化”的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。
[设计意***:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]
六、课外作业
课本第87页“练习十六”第5、6、7题。
板书设计
三 角 形 的 面 积
平行四边形的面积=底×高
s=ah÷2
=100×33÷2
=1650(cm)
三角形面积=底×高÷2
s=ah÷2
教学反思:
本节内容是在平行四边形面积计算的基础上进行教学的.,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “教学活动”转化为“学习活动”,引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。
一、小组结合动手操作
在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
二、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“除以2”的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。
三、应用公式解决生活中的问题
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识,从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。
教学内容:教科书第59、60页,练习十五第1题。
教学目标:
1.通过观察比较,使学生认识三角形,知道三角形的特征及三角形高和底的含义,会在三角形内画高。
2.培养学生观察、归纳的能力,体验数学与生活的联系,培养学生学习数学的兴趣。
教学重点:认识三角形,知道三角形的特征及三角形高和底的含义,会在三角形内画高。
教学难点:会画三角形指定边上的高。
教具、学具准备:三角板、作业纸
教学过程:
一、联系生活,情境导入
1.打开课本观察情境***:我们的生活中处处都能发现数学知识,你能找出***中的三角形吗?
2.生活中哪些物体上也有三角形呢?让学生说一说。生:房顶、红领巾、标志牌等……
3.导入课题:三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课老师就和大家一起来探究关于三角形的知识。(板书课题)
二、操作感知,理解概念
1.发现三角形的特征。
(1)、学生自己画出一个自己喜爱的三角形,边画边想你是怎么画这个三角形的,你画的三角形有什么特点?
(2)、教师在黑板上画一个三角形,让学生说一说老师画的三角形和你画的三角形有什么共同特点,根据学生的汇报板书,请学生上台标出三角形的3条边,3个顶点和3个角。
(3)请学生在自己画的三角形中标出三角形的3条边,3个顶点,3个角
2.用字母表示三角形
(1)师:全班这么多同学我们是用什么来区分,不会认错的?(名字)你们画这么多的三角形怎样很快说出每个三角形呢(收集学生画的三角形?(起名字)在数学中,为了表达方便,通常用字母A、B、C分别表示三角形的3个顶点,上面的三角形可以表示成三角形ABC。
(2)请你给你的三角形起个名字。
3.概括三角形的定义。
(1)、引导:大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的***形叫三角形?
(2)、学生回答,教师引导。
A有三条边的***形叫三角形或有三个角的***形叫三角形;
B有三条边、三个角、三个顶点的***形叫三角形;
C教师演示由三条线段围成的封闭***形叫三角形,通过画的过程着重理解围成的意思。
(3)学生归纳总结定义。
4.认识三角形的底和高。
(1)、学生板演三角形的高,教师辅助指导,总结归纳出三角形高的概念。
(3)师带领学生一起回顾作高的方法,强调底和高的概念,从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
(4)、明确:这条高是谁的高?从哪里向哪里作高,三角形的一个底上可以画几条高。
(5)、学生在自己的作业纸上画一条三角形的高。
(6)想一想,一个三角形可以画几条高?
四、巩固运用,提高认识
1、三个***形任选一个,画出三角形底边上的高。
2、展示评价学生作品
3、重点讲解直角三角形的直角边的高。
五、总结评价
谈一谈这节课你的收获。
六、板书设计
三角形的特征
由三条线段围城的***形叫做三角形。
三个顶点
三个角
三条边
【教学内容】:
人教版五年级上册第六单元第91~92页内容
【教学目标】:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
【教学重点】:
探索并掌握三角形的面积公式,能正确计算三角形的面积。
【教学难点】:
理解三角形面积公式的推导过程。
【教学准备】:
每人各两个完全一样的三角形,直角三角形、锐角三角形、钝角三角形任选一种,多媒体课件。
【教学过程】:
一、汇报演示
师:同学们请看屏幕,这两块披萨老师要买一块当做明天的早餐,你建议我买哪一块呢?如果现在给你一组数据呢?
师:同学们请看屏幕,为了我们在操场玩耍更安全,为每个班级在操场上画分了一个区域,现在咱们班级啊,就剩下这两块选一个了,你打算帮班级选哪一块呢?
师:为什么买这一块呢?
师:哦,同学们通过微视频的学习,已经会计算三角形的面积了是吗?
师:谁能说说三角形面积怎么求:三角形面积=底×高÷2
师:为什么它的面积是底×高÷2呢?
生:到前面展示三角形拼平行四边形过程。
夯实对应关系:两个完全相同的三角形可以拼成一个()拼成的平行四边形的底等于()拼成的平行四边形的高()因为平行四边形的面积是()所以三角形的面积就是()。
师:总结三角形面积公式,用字母表示就是,计算三角形面的时候你知道需要注意什么?
师:刚刚我们一起推导了三角形面积的公式,它是通过转化成平行四边形后来求面积的,那你还记得我们当时学平行四边形的时候是怎样转化的吗?
师:看来这些知识之间是有联系的,并且我们可以通过已有知识的牵移,就可以解决新的问题。同学们那我们下节课要学习梯形的面积,你能想一想,它的面积可能怎样转化呢?下个微视频当中,我们一同去探究。先看我们的三角形吧。它的面积你学明白了吗?知道求的过程中需要注意什么吗?
师:一个小小的2会在三角形的世界里为我们带来许多神奇的变化,想见识一下吗?看你能战胜这个数字,还是被它打败了。
(一)判断题。
1、两个三角形的底都是20厘米,高都是10厘米,一定可以拼成平行四边形。
2、两个完全一样的直角三角形一定可以拼成正方形。
3、面积相等的两个三角形一定等底等高。
(二)选择题。
1、下面平行线间的3个三角形大小关系正确的是()
A、ABC面积***、BCD面积大C、BCE面积大D、同样大
2、求右***中三角形面积正确列式为()
A、4.8×5÷2B、4×5÷2C、4×4.8
师:你是胜了,还是败了啊?败给了谁啊?哎,知己知彼百战百胜,咱明知和2打仗,怎么就败了呢?可惜啊!如果给你一个反败为胜的机会,你能把握好吗?那么好吧,机会要抓住啊,咱们的敌人还是谁啊?这次战场可别轻敌啊,再败下来,可没机会喽!
(三)解决问题
1、已知一个三角形的面积是500平方米,底是40米,求这个三角形的高。
一个三角形的底是3厘米,高是4厘米,面积是多少厘米?
另一个三角形的底是3厘米,高是4厘米,面积是多少厘米?
还有一个三角形,底是4厘米,高是3厘米,面积是多少厘米?
一个三角形,底是5厘米,高是2.4厘米,面积是多少厘米?
拓展延伸:
思考一:三角形和平行四边形面积相同,底也相同,它们的高什么关系?
思考二:三角形和平行四边形面积相同,高也相同,它们的底什么关系?
思考提示:若头脑中不能建立起两个***形,我们可以利用假设方式求出它们各自的高和底再进行观察。可以假设一组数据,假设它们的面积都是20平方厘米,底都是4厘米,我们可以求出它们的高再进行观察。如果思考一你能解决,相信思考二你便能推导出这种关系,如果不能,还可以利用假设的方法,比一比,看谁最聪明。
如果你能弄清楚上面的思考题,看看自己能不能快速计算出下面几道题?
三角形和平行四边形面积相同,底相同,三角形的高是30厘米,平行四边的高是?
三角形和平行四边形面积相同,底相同,平行四边形的高是30厘米,三角形的高是?
三角形和平行四边形面积相同,高相同,三角形的底是20厘米,平行四边的底是?
三角形和平行四边形面积相同,高相同,平行四边形的底是20厘米,三角形的底是?
一、教学内容
《义务教育教科书(五·四学制)·数学(四年级下册)》22~23页。
二、教学内容
1、掌握三角形的面积计算公式,并能正确计算三角形的面积。
2、经历探索三角形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。
3、能运用三角形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
三、教学重点
探究三角形面积的计算方法。
四、教学难点
把三角形转化成平行四边形,探究平行四边形与三角形之间的关系,推导三角形面积的计算公式。
五、教学准备
三角形卡片、多媒体课件。
六、教学过程
(一)创设情境,提供素材
师:同学们,这节课,让我们一起走进生产车间,看看工人制作标志牌的场景。
课件出示***片。(见***1)
师:你想提出什么数学问题?
预设:制作这个标志牌需要多少平方分米的铝皮?
师:标志牌是一个什么***形?
预设:三角形。
师:那么求这块标志牌的面积也就是求什么的面积?
预设:求三角形的面积。
师:今天我们就来研究三角形的面积。
教师适时板书:三角形的面积。
设计意***:
从学真实的幸福生容易感兴趣的情境问题入手,激发学生的好奇心、求知欲,使学生积极投入到探索性的数学活动中。
(二)积极思考,引导猜想
师:三角形的面积是什么?谁来猜猜看?
预设1:底乘高。
预设2:三边相乘。
师:那你们想怎么来研究它?
预设:把它转化成以前学过的***形。
师:你怎么想到用转化?
预设1:因为三角形没学过,转化成以前学过的***形就能研究了。
预设2:我们上节课学习平行四边形的时候用的就是转化的思想。
师:转化后再怎么研究?
预设1:看转化后的***形和原来三角形之间的关系。
预设2:根据关系推导出三角形面积计算公式。
预设3:我们研究平行四边形的时候就是这样研究的。
师:你们真是很有想法!想到用研究平行四边形面积的方法来研究三角形的面积。老师帮你们把你们提出的这个研究思路梳理一下。
设计意***
学生经过大胆地猜测,好奇心被激发起来,自觉运用知识进行迁移,由于之前刚刚学完平行四边形的面积,学生充分经历的推导过程,学生自然会想到“转化”的数学思想方法。
(三)操作验证,总结公式
师:在学习材料包里有好多三角形,下面我们来同桌合作,根据这个思路来研究研究看,开始吧。
学生活动,教师搜集不同素材。
师:哪个小组愿意先上来汇报一下你们的研究成果?
小组为单位上台汇报锐角、直角、钝角三角形的研究成果。
师:老师发现,你们的想法不谋而合,都是把三角形转化成了平行四边形。在操作的时候,我们可以将两个完全一样的三角形重合,其中一个绕顶点旋转180度后平移,就能得到平行四边形。
课件适时展示旋转过程。
师:那是不是所有的三角形都有这样一个关系呢?
预设:按角分,三角形可以分成这三类,经过研究我们发现这三类三角形都是与它等底等高的平行四边形面积的一半。这三类三角形都符合,我们就不需要再验证了。
师:那我们可以得到结论了吗?
学生回答,教师适时板书:三角形的面积=底×高÷2
师:如果三角形的面积用S表示,底用a表示,高用h表示,怎么用字母来表示?
学生回答,教师适时板书:S=ah÷2
师:对于三角形的面积公式,你有什么要问的吗?
预设:为什么要除以2?
师:哪位同学能帮着回答一下?
预设:我们是用两个完全一样的三角形拼成的平行四边形,那么一个三角形的面积就要用平行四边形的面积除以2。
设计意***
通过学生大胆猜测,选择***形—动手操作—观察、交流、讨论—汇报得出公式的系列过程,可以使学生很自然地产生,一步步向前探索的需要。学生既理解公式的来龙去脉,又实实在在经历探究与发现的全过程,既让学生掌握探索问题的一般方法,又使学生感受到数学方法的内在魅力。
(四)应用公式,解决问题
1、回归情境,解决问题。
师:现在你能解决这个问题了吗?
学生运用公式进行解答。
2、求下面的几个三角形的面积。
3、填空。
(1)平行四边形的面积是20平方米,与它等底等高的三角形的面积是( )平方米。
(2)一个三角形花坛底长10米,高是底的一半,花坛的面积是()平方米。
4、判断改错。
师:小马虎同学写了一篇数学日记,咱们来看看他写的怎么样?
课件出示:今天,我学习了新的知识:三角形的面积。我知道了三角形的面积是S=ah÷2,我认为两个三角形一定可以拼成一个平行四边形。这是一种转化的数学思想。我还知道了三角形的面积是平行四边形的面积的一半。瞧!我学习得怎么样!
学生发现错误。
5、数学史介绍。
课件出示20xx年前《九章算术》里面三角形面积的研究方法。
师:如果只有一个三角形,你还能想办法研究出三角形的面积公式吗?有兴趣的同学我们课下来研究研究。
设计意***
练习设计层次清晰,既有基础练习,又有拓展练习。特别增加了数学史的内容,可以开拓学生的视野,也给学有余力的学生留下了继续探索的空间。
教学目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;
3.能熟练找出两个全等三角形的对应角、对应边.
教学重点
全等三角形的性质.
教学难点
找全等三角形的对应边、对应角.
教学过程
一.提出问题,创设情境
1、问题:你能发现这两个三角形有什么美妙的关系吗?
这两个三角形是完全重合的
2.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下***形,照***形裁下来,纸样与三角板形状、大小完全一样.
3.获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.
形状与大小都完全相同的两个***形就是全等形.
要是把两个***形放在一起,能够完全重合,就可以说明这两个***形的形状、大小相同.
概括全等形的准确定义:能够完全重合的两个***形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求.
二.导入新课
将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.
议一议:各***中的两个三角形全等吗?
不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.
(注意强调书写时对应顶点字母写在对应的位置上)
启示:一个***形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的***形全等,这也是我们通过运动的方法寻求全等的一种策略.
观察与思考:
寻找甲***中两三角形的对应元素,它们的对应边有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.
[例1]如***,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.
问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?
将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如***,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.
分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的***形中分离出来.
根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:
(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.
(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
解:对应角为∠BAE和∠CAD.
对应边为AB与AC、AE与AD、BE与CD.
[例3]已知如***△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)
借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
三.课堂练习
课本练习1.
四.课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的
找对应元素的常用方法有两种:
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
五.作业
课本习题1
课后作业:《新课堂》
微课作品介绍本微课是苏教版小学数学四年级下册《三角形内角和》的课前先学指导,学生在家观看视频内容,同时结合学习任务单,在视频的指导下通过猜、量、算、剪、拼等方法探索三角形的内角和是180度。学生在课前利用视频完成学习任务单,然后到学校课堂中和老师、同学进行交流,再进一步提升。
教学需求分析适用对象分析该微课的适用对象是苏教版四年级下学期的小学生,学生应认识三角形的基本特征,学习过角和角的度量,知道平角是180度。具备了一定的动手操作能力和数学思维能力。
学习内容分析该微课让学生发现、验证三角形的内角和是180度的结论。这部分内容是在学生认识了三角形的基本特征和三边的关系后,三角形分类前学习的。这在苏教版中和原来的教材不同,放在这里是因为三角形内角和是学生进一步学习和探究三角形分类方法的重要前提。学生知道了三角形的内角和是180度,对三角形分类及命名的方法,才能知其然,还能知其所以然。
教学目标分析:
1、通过学生的实际操作,理解并验证三角形的内角和等于180°,并能够运用结论解决简单的实际问题;
2、使学生通过观察、实验,经历猜想与验证三角形内角和的探索过程,在活动中发展学生的空间观念和推理能力。
3、已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在学习时的主要目标是验证三角形的内角和是180度。
教学过程设计本微课教学过程:
一、明确多边形的内角、内角和概念。
首先要明确概念,才好继续研究。内角、内角和以前学生没有学过,还是有必要给学生明确的。
二、探索三角尺的内角和,猜想三角形的内角和。
从学生熟悉的三角板开始计算三角板的内角和,引发学生猜想,三角形的内角和是多少。
三、验证三角形内角和是否为180°。
验证分为三个层次:首先是量教材提供的三角形,算出内角和,可能会有误差。其次把三角形三个内角拼在一起,拼成是平角180度。最后自己任意画一个三角形剪下来,拼一拼,得出结论。让学生经历由特殊到一般的认知过程。
四、拓展延伸,探究梯形、平行四边形和六边形内角和。
由三角形的内角和,学生自然就会想到已学过的梯形、平行四边形和六边形内角和是多少呢。教师留下问题让学有余力的学生进一步去探索。
五、自主学习检测
学生观看完了视频是否学会了,是需要检测的。学生通过做完自主检测后进行校对,检验自己所学。
学习指导本微视频应配合下面的学习任务单共同使用,在观看视频时,根据视频提示随时暂停视频依次完成任务单。
自主学习前准备:
请在自主学习前阅读学习任务单的学习指南,并准备好数学书、一副三角尺、量角器、剪刀、铅笔等学习用具。
自主学习任务单:
通过观看教学资源自学,完成下列学习任务:
任务一:明确多边形的内角、内角和概念
1、你认识下面的***形吗?他们各有几个角,请在***中标出来。
2、你刚才标出的角,又叫做每个***形的()。
3、如果把一个***形所有的内角的度数加起来,所得的总和就是这个***形的()。
4、你知道***中长方形和正方形的内角和是多少度吗?你是怎么知道的?
长方形内角和正方形内角和
任务二:探索三角尺的内角和,猜想三角形的内角和。
1、请拿出一副三角尺,你知道每块三角尺上各个角的度数?在***上标出来。
2、算一算,每个三角尺3个内角的和是多少度。
3、根据你刚才的计算结果,你能猜想一下,任意一个三角形它的内角和的度数呢?
任务三:验证任意三角形内角和是否为180°
1、请从数学书本第113页剪下3个三角形,用量角器量出每个三角形3个内角的度数。
算一算,每个三角形3个内角的和是多少度。
2还可以用什么办法来验证剪下的这3个三角形的内角和等于180度?(把你的验证方法展示在下面。)如果你想不出来请看下面的提示。
温馨提示:平角正好是180°,这三个内角能正好拼成一个平角吗?
3、自己任意画一个三角形,先剪下来,再拼一拼。
4、你发现了什么?写在下面。
5、请你回顾一下我们研究三角形形内角和是180度的过程?简单的写下来。
任务四:拓展延伸
任务一中还有梯形、平行四边形和六边形,如果你有兴趣,你可以研究他们的内角和。
任务五:自主学习检测
1、右边三角形中,∠1=75°,∠2=40°,∠3=()°
2、第3个三角形还可以怎样计算,哪种更简便?
3、一块三角尺的内角和是180°,用两块完全一样的三角尺拼成一个三角形,拼成的三角形内角和是多少度?
4、用一张长方形纸折一折,填一填
配套学习资料苏教版小学数学四年级下册教材
制作技术介绍Camtasia Studio软件制作、PPT。
一、教材分析:
《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第二单元认识***形中的一个教学资料。这部分资料是在学生学习了了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习了的基础。教材透过实际操作,引导学生用实验的方法探索规律,概括出一般结论,即任意一个三角形,它的内角和都是180度。之后说明应用这一结论,在一个三角形中,已知两个角的度数,能够求出第三个角的度数。教材在编写上也深刻的体现出了让学生探究的特点,透过动手操作、小组合作探究,发现三角形内角和为180度。它的教学资料的核心思想体此刻,透过让学生透过直观操作,透过猜想―验证―结论的过程,来认识和体验三角形内角和的特点,在小组活动中,通量一量、拼一拼、折一折等进行猜想―验证数学的思想方法。
《三角形的内角和》在教学中,为解决数学思维的抽象性与小学生认知的矛盾,我为学生带给了足够探索的时间和空间,透过观察、操作、分析、推理、想像等活动来认识***形的特征,发展学生的空间观念和推理潜力,为学生进一步学习了打基础。
(1)首先透过“猜谜”即复习了了所学知识,又从中引出新课,有利于激发学生求知、探索的欲望,也调动了学生学习了的用心性。在得到,为什么同学们猜想的三角形和实际的三角形不同,提出了本节课所学重点知识――三角形内角和。透过猜想三角形内角和的度数,引发出要进行验证的数学思想。透过小组合作,利用不同类型的三角形进行实验。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。
(2)为了让学生深刻地理解三角形内角和的规律,设计了给出三角形两个角的角度,求第三个角;两块同样的三角尺拼成的一个大三角形的内角和又是多少呢并设计:拼成的是三个角都相等的三角形;拼成的是两个角相等,且有一个角是直角的三角形;拼成的是两个角相等,且有一个角是钝角的三角形。递进的两道题知识点应用的题目,把数学知识与生活紧密联系,培养了学生的求异思维,也感受到解决问题策略的多样性。拓展练习了:大三角形,剪下一个角也是一个(小三角形),剪下的小三形的内角和是多少度?那么剩下的***形是多少度?还原成一个大三角形又是多少度?及五边形、六边形等这些多边形的内角和你们能求出吗?进一步使学生加深对概念的理解,明确三角形的内角和是180度,这与它的大小开关无关。运用适度的延伸,激发学生广阔的想象空间,实践探索的欲望,做到让不同的学生学习了不同的数学。
二、学生分析:
(一)学生已有知识基础:(调查问卷,访谈)
1、学生已具备了角的度量,角的分类,三角形的认识,三角形的分类等知识。
2、明白等边三角形的每个角是60度,所以能算出“三角形内角和为180度。”学生明白三角形内角和是180度。但是不是所有的三角形都等于180度,学生还不肯定。
3、其中明白三角形内和是180度的学生有23人,占全班总人数的54、8%。
由此,我把自己的学习了目标设定为,让学生自己动手发现不同类型的三角形的内角和都是180度这个知识点上。
4、有少部分学生明白无论是大三角形还是小三角形,他们的内角和都等于180度。
(二)学生已有生活经验和已具备的潜力:学生具备了必须的动手操作潜力,和小组的合作交流潜力
(三)学生学习了该资料的困难:在小组合作过程中,由于中年级的孩子年龄不大,所以在动手操作过程中有的学生动作较慢,在小组合作谈论的过程中,有些学习了困难的学生小组合作潜力偏弱。(课堂中观察小组合作所得出)。
(四)学生学习了的兴趣(访谈):
1、自己动手发现三角形内角和为180度,对小组合作很感兴趣。
2、透过学习了,明白了三角形无论大小,它的内角和都是180度,对这个知识感到搞笑。
学习了方式和学法分析:主要是利用了小组合作学习了、伙伴交流
三、学习了目标:
1、让学生探索发现三角形的内角和是180°。
2、透过动作剪、摆、拼等活动提高学生的动手潜力和思维潜力,感受数学的转化思想;
3、培养学生主动探索、动手操作的潜力;发展学生的空间观念和初步的逻辑思维潜力;
过程与方法:(数学思考、解决问题)培养学生初步构成验证结论的意识及学生之间良好的合作学习了的习了惯。理解三角形的内角和是180°,应用三角形内角和的知识解决实际问题。
4、情感态度价值观:渗透转化迁移思想,培养学生大胆质疑的勇气和严谨科学的精神。
教学重点:让学生经历“三角形内角和是180度”这一知识的构成、发展和应用的全过程;明白三角形的内角和是180度并且能应用。
教学难点:三角形内角和是180度的探索和验证。
教学准备:学具准备:各种类型的三角形学具和学习了资料。
教具准备:各种类型的三角形教具、实物投影仪、FLASH动画课件。
四、教学过程:
一、创设情景,激发学生学习了兴趣(6分钟)
1、你们喜欢玩猜谜游戏么?我那里三个三角形,(贴出***形)
ABC
“你们能猜出这三个三角形分别是什么三角形么?”当学生猜A是锐角三角形时,教师拿去
彩色纸,
ABC
师质疑问:“怎样回事?”(只看到一个锐角不能判定是锐角三角形?要三个锐角才行。)
【“猜谜”即复习了了所学知识,又从中引出新课,有利于激发学生求知、探索的欲望,也调动了学生学习了的用心性。】
2、师:为什么看到一个直角或钝角就能够决定出是直角三角形或钝角三角形,而看到一个锐角却不能判定是锐角三角形,必须要三个锐角才能说是锐角三角形呢?(如果不能回答,请同学们看黑板上的这3个三角形都有什么共同点?任何一个三角形都有两个锐角。因为每一个三角形都有两个锐角,所以只看到一个锐角就不能决定它必须是锐角三角形。)
3、师:“既然每一个三角形都两个锐角,可不能够有两个直角或两个钝角呢?”,师:下面,请同学们画一个有两个直角的三角形。
师:你们画成功了吗?
师:你们想一想,为什么你们画不出?
师:看来,三角形的三个内角可能藏有必须的奥秘。这节课我们就来一齐研究三角形的内角和。(板书:三角形的内角和)
二、自主探索,合作交流(20分钟)
(一)看了这个课题,你想明白什么或者你有什么问题么?(什么是三角形的内角?内角和是什么意思?三角形的内角和是几度?学习了三角形的内角和有什么作用?)
1、理解“内角”。(2分钟)
师:什么是内角?谁想说说自己的想法?(学生说出自己的理解)
师:三角形的每个角都是三角形的内角(课件演示)。你明白一个三角形有几个内角呢?(三个)
2、理解“内角和”。(2分钟)
师:那我们再来想一想三角形的内角和指的是什么呢?能够和同桌说说自己的想法。(生说:就是把三角形的三个内角的度数加起来)为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它∠1、∠2、∠3,这三个角的度数和,就是这个三角形的内角和。
【扫清学生概念上存在的障碍,为深入理解三角形内角和打下了基础】
师:请同学们猜一猜,三角形的三个角加起来是多少度?(生180度),那么所有的三角形的内角和都是180度么?(教师补充板书:三角形内角和1800)(生不是很肯定),
(二)小组合作,探究学习了(16分钟)
师:老师在每个同学的桌子上都放了很多不同的三角形,还有量角器等学习了材料请同学们先***思考采用什么方法来验证自己的猜想,再在小组里讨论,交流。
学生交流自己的想法,动手实践操作,验证自己的猜想。
(三)提出实验要求:
1、小组合作:
同学们能够用什么样的方法来证明三角形的内角和是1800,请同学们群众小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!
2、汇报交流。
谁愿意来给大家介绍你们小组是用每日笑话什么方法来验证三角形的内角和是1800的?
生A:我们小组的方法是用量角器测量出三个内角的度数,求出和是1800。
师:你们的方法是分别测量三个内角的度数,那你测量的三个内角的度数分别是多少?(生汇报师板书)你觉得这个小组的方法怎样?(抽生评价)还有不同的方法吗?
生B:先假设是1800,测量出角1和角2的度数,算出第三个角的度数,再用量角器测量验证第三个角是否是算出的结果。(师:那你测量的两个角分别是多少度?怎样算出第三个角的度数,和量角器测量出的结果一样吗?)
师:这个小组的方法也巧妙,还有谁不同的方法?
生C:我是用剪拼的方法,是怎样剪拼的呢?上台来展示给我们大家瞧一瞧(投影仪)(生:把三角形的三个角剪下来后拼成一个平角)你剪的是什么三角形?那还有直角三角形、钝角三角形呢?请男同学拿出钝角三角形,女同学拿出直角三角形,迅速剪下三个角,看能否拼成一个平角。
能够拼成平角吗?那我们就说三角形的内角和是1800,还有同学在举手,请你说。
生D:折,将三角形的三个角折成一个平角。(你是怎样折的,快上来展示给我们大家瞧一瞧!
师:真是个心灵手巧的孩子,让我们把掌声送给他!动脑筋的同学真多,请你说。
生E:我是根据长方形的内角和是3600推理出三角形的内角和是1800。
师:能从不同的角度去思考问题,你真棒!
师小结:(课件演示)刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是1800,(师手指课题)你们真不错,在这句话后面加个什么号?加个感叹号!我为你们成功的学习了表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是1800”。(教师相应板书?改成!)
师:请同学们打开书27页,这就是我们这天学习了的一个新知识。
【透过小组合作中动手操作。加深对三角形内角和地认识,体验、发现三角形内角和性质的探索过程,透过同学之间的合作激发学生的学习了兴趣。】
〔点评〕让学生在猜测三角形的内角和是180度之后,用自己的方法予以验证,是本节课最重要的环节,主要有以下几个特点。
(1)、以知识为载体、过程与方法为媒介,把对学生情感态度价值观的培养落实在具体的学习了活动之中。学生对内角和的猜测缺乏必须的科学依据。在那里,教师要求学生用自己的方法进行验证,把知识的学习了与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。
(2)、知其然,还要知其所以然,让学生完整的经历学习了过程。教学透过学生动手量、折、剪、拼、计算、推理等多种方法,得出三角形的内角和是1800,不仅仅验证了自己的猜想,而且也充分第证明了给片面追求过程或者片面追求结果的教学行为以正确的引领,过程与结果是相互依靠,相互支持的整体。
(3)、面向全体学生,把学生是学习了的主体落在实处。小组合作是课程改革所倡导的一种新的学习了方式,但在具体采用这种方式却出现了一些偏差,往往片面追求形式,追求热热闹闹的场面,给教学造成了必须的负面影响。本节课,教师立足于学生的创新意识和实践潜力的培养,把学习了的时空还给学生,成功地开展了小组合作学习了,使学生在数学的海洋的遨游中展开思维的翅膀,用7种方法对三角形的内角和是180度进行了验证,也有效地培养了学生的发散思维潜力。
三、运用所学,解决问题(8分钟)
如果老师告诉你一个三角形的两个角的度数,你有本领说出还有一个角的度数吗?
1、求出下面各角的度数。(***做在书上。)(3分钟)
2、(同桌伙伴活动)刚才同学们完成得都很好,下面我们一齐做一个拼三角形的游戏。
要求:用两个完全一样的三角尺(2组***片代替)拼成一个大三角形,并说出它的内角和是多少度?(5分钟)
(1)拼成的是三个角都相等的三角形。
(2)拼成的是两个角相等,且有一个角是直角的三角形。
(3)拼成的是两个角相等,且有一个角是钝角的三角形。―
反馈:那位同学愿意到前面来展示你的结果。
【设计意***:递进的两道题知识点应用的题目,把数学知识与生活紧密联系,培养了学生的求异思维,也感受到解决问题策略的多样性。】
四、拓展练习了。(机动)(4分钟)
1、那此刻同学们看我手中拿着的是一个什么***形(师手拿三角形)剪下一个角也是一个(小三角形),剪下的小三形的内角和是多少度?那么剩下的***形是多少度?还原成一个大三角形又是多少度?(2分钟)
【设计意***:旨在加深对概念的理解,进一步明确三角形的内角和是180度,这与它的大小开关无关】
2、运用三角形的内角和是180度,我们得到任意一个四边形的内角和是多少度(360度)那么(课件出示)巴比伦文明五边形、六边形等这些多边形的内角和你们能求出吗?请同学们下去试一试。【让我们带着问题走进课堂,又带着问题走出课堂……】(2分钟)
[设计意***:适度的延伸,激发学生广阔的想象空间,实践探索的欲望,做到让不同的学生学习了不同的数学。]
五、总结(2分钟)
这天这节课你有什么收获?有什么遗憾?你还想明白些什么?
六、板书设计:
三角形内角和等于1800!
教学反思:三角形的内角和原本是初中一年级的资料,新课标把三角形的内角和作为四年级下册中三角形的一个重要组成部分,它是学生学习了三角形内角关系和其它多边形内角和的基础。很多学生已经明白了三角形的内角和是180度,但是为什么师80度,是不是所有的三角形内角和都是180度,就成为了学生学习了的重点与难点。因此让学生经历研究的过程,探索三角形内角和就成了本节课的重点。既让学生经历“再创造”————自己去发现、研究并创造出来。教师的任务不是把现成的东西灌输给学生,而是引导和帮忙学生去进行这种“再创造”的工作,最大限度调动其用心性并发挥学生能动作用,从而完成对新知识的构建和创造。本节课基本到达了要求,具体表此刻以下几个方面。
1、不断创设问题情景,激发了学生的探究兴趣。
对于小学生来说。学习了的用心性首先来源于兴趣,兴趣是学习了的最佳动力。如何让学生产生兴趣,要不活动本身搞笑,要不就是教师不断创设问题情景,呈现给学生“十分性”的问题,使学生感到奇异,激发学生参与学习了活动的欲望,并兴趣盎然的投入到学习了活动中去。本节课一开始透过一个“猜谜”的游戏让学生感觉搞笑,之后设置了一个悬念:为什么看到一个直角或钝角就能够决定出是直角三角形或钝角三角形,而看到一个锐角却不能判定是锐角三角形?在惊奇中产生了强烈的“要讨个说法”的学习了兴趣。当这个问题解决时,又一个问题随之而来“既然每一阿胶粉怎么吃个三角形都两个锐角,那么为什么不会有两个直角或两个钝角呢?”给学生造成一种急切期盼的心理状态,具有强烈的诱惑力,激起学生探究和解决问题的浓厚兴趣,将学生自然的引入到对新知的探究中。
2、为学生营造了探究的情境。
学习了知识的最佳途径是由学生自己去发现,因为透过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应带给给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。上述教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生透过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。当学生验证掌握了三角形的内角和后,教师又及时提出:‘“你能研究出任意四边形、五边形、六边形甚至一百边形的内角和是多少度吗”,把课堂研究引向课外研究。
启示:
为了有效地上好课,教师无疑应当根据教学目标和课程资料,精心地设计教学过程。但是,这种设计不应当是铁定的限制教师教学框子,课堂上的教学操作也不应当是“教案剧”的照本上演。教学应对的是一个个活生生的、富有个性、具有独特生活经验的学生。课堂总是处于一种流变的状态,课堂上教学的情境无时不在变化,学生学习了的心态在变化,知识经验的积累状况也在变化,因此,我们教师在备课的过程中,要充分预计学生已有的知识水平,站在学生的角度来思考:如果自己是学生,我已懂了哪些知识?还有什么问题?教什么和怎样教,做到以“学”定“教”。在具体实施过程中,我们更应充分运用自己的教育机智,仔细倾听学生的发言,开放地吸纳各种信息,善于捕捉教育契机,及时调控自己的教学行为。只要坚持做到“为学习了而设计”、“为学生的发展而教”,那么我们的课堂将会更加生机勃勃,我们的学生就会产沙拉酱生智慧和欢乐,萌发出创造的火花。
附:《三角形内内角和》课前调查问卷
在你认为正确的答案后面“√”。
1、你明白有关三角形内角和的一些知识么?
A、明白B、不明白
我明白(知识)
2、三角形的内角和是()度。
3、所有的三角形的内角和都是相等的么?
A、相等B、不相等
设计理念:
数学课程标准指出:有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本课的教学遵循学生的认知特点,为学生提供大量的观察、思考、操作、合作、交流、验证等空间和时间,使学生在自主探究和合作交流中,学会给三角形分类,掌握各类三角形的特征,体会数学的思想方法并获得广泛的数学获得经验。
教学内容:
人教版小学数学四年级下册第83—84页的内容。
学情与教材分析:
三角形对于学生来说是比较熟悉的,三角形的基本特征和各部分名称学生都已经掌握,而且学生已经学过了角的分类,认识了各种角的特征,这对于学生进一步学习三角形的分类打下了扎实的基础,在三角形分类的过程中,能沟通知识间的联系,掌握各种三角形的特征,培养学生的探究意识和合作意识。提高解决实际问题的能力,发展学生的空间观念。
教学目标:
1、通过观察、操作、比较,会根据三角形的角和边的特点进行分类,掌握各种三角形的特征。
2、在活动中渗透分类和集合的数学思想,培养学生动手操作能力和归纳概括能力,进一步发展学生的空间观念。
3、在三角形分类的过程中,沟通知识间的净水机排名前10名品牌联系,培养学生的探究意识和合作意识。
教学重点:
会根据角和边的特点给三角形分类。
教学难点:
掌握各种三角形的特征。
教学准备:
课件、各类三角形学具、实验报告单、量角器、尺子等。
教学过程:
课前互动:用手比角。
一、创设情境,复习旧知
1、猜谜,复习旧知
师:孩子们,喜欢猜谜吗?(喜欢)今天,老师给大家带来了一个谜语,猜猜看。
课件出示:
形状似座山,
稳定性能坚。
三竿首尾连,
学问不简单。
——打一几何***形
师追问:猜得真准!你是怎么猜出来的?
2、导入、揭示课题
师:三角形有三个角和三条边,它的稳定性在日常生活中有着广泛的应用。你瞧,今天三角形王国的许多朋友来了(课件出示:不同形状的三角形),它们的形状一样吗?(不一样)对,它们形态各异,各有各的特点。这节课咱们就根据它们的特点来分分类。(板书课题:三角形的分类)
(设计意***:趣味竞猜,引“生”入胜。通过竞猜,唤起学生对三角形的角和边的有意注意,激活学生的学习热情,做到“课伊始,趣亦生”。)
二、实践操作,探究分类
师:孩子们,认真想一想,你要根据什么来给这些三角形分类?有不同意见吗?对,分类要按一定的标准进行,三角形可以按三个角和三条边的特点进行分类。接下来我们先按角来分。
(一)、按角分
1、师:老师把这些三角形放在小组长的1号信封里,在操作之前我们来看看学习提示,请位同学读一读。
学习提示:
A、每个组员从1号信封里取出2个三角形,仔细观察或比一比、量一量三角形三个角的每个角分别是什么角,标在三角形上。
B、有顺序地汇报,把同一类的三角形放在一起。
C、组长填写好报告单。
D、每组派一名代表汇报。
2、动手操作,合作分类。
3、全班汇报交流、评价。
师:你们组分成几类?哪几个分成一类?有什么特点?有不一样的分法吗?
4、课件展示,并根据各类三角形的特点起名称。
5、小结,师介绍三角形按角分的集合***并板书集合***。
6、比麻仁润肠丸较三种三角形的异同点。
7、小结
(二)、按边分
1、师:学会了按角的特点给三角形分类,我们再来研究按边分的三角形。我把这些三角形放在小组长的2号信封里。操作之前请看学习提示,请位同学读一读。
学习提示:
A、每个组员从2号信封里取出1个三角形,用自己喜欢的方式研究三角形三条边的长度,你发现了什么?
B、有顺序地汇报,把同一类的三角形放在一起。
C、每组派一名代表汇报。
2、动手操作,合作分类
3、全班汇报交流、评价。
4、课件展示,并根据各类三角形的特点起名称。
5、认识等腰三角形和等边三角形各部分的名称,以及等腰三角形两底角的关系和等边三角形的三个内角的关系。
6、说一说生活中见过的等腰三角形和等边三角形,课件展示。
7、小结。
(设计意***:“自主学习的过程实际就是教学活动的过程”。以活动促学习是本节的教学定位。在活动中,给学生足够的时间和空间,自由的、开放的探究数学知识的产生过程。通过看一看、想一想、议一议、分一分、猜一猜等多种形式的学习,为学生提供更多“数学对话”的机会,力求让学生真正地动起来,充分展现做中学,从而获得对三角形边、角特征的认识,进而学会给三角形分类,促进学生的分类、概括、推理以及动手操作能力的提高,使他们在活动的过程中感悟出数学的真谛,逐渐养成探索的习惯,培养学生合作意识和创新能力。)
三、巩固练习,内化提高
1、猜角游戏
师:把三角形藏起来,只露出一个角,你能猜出是哪种三角形吗?(课件分别出示:露出一个直角、一个钝角、一个锐角)
追问:你是怎么猜出来的?
2、在点子***中画一个自己喜欢的三角形。
投影展示,介绍既是什么三角形又是什么三角形的知识。
(设计意***:多形式、多层次的练习力求把学生带人一个活动场,一个思维场,一个情感场!学生在这个场域中游历,逐渐地内化知识、增长智慧、提升能力。)
四、全课总结,课外延伸
1、这节课你有什么收获和大家一起分享,说说吧!
2、完成课本第87页第5题。
3、用三角形拼一幅美丽的***案。
(设计意***:通过总结帮助学生统揽知识要领,完善认知,使得对三角形有有更全面更深刻的理解,再把知识从课堂延伸课外,有效沟通数学与生活,实现小课堂大社会,体会数学知识在生活中的应用价值。)
【教学目标】
教学知识点
1.等腰三角形的概念.
2.等腰三角形的性质.
3.等腰三角形的概念及性质的应用.
能力训练要求
1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点.
2.探索并掌握等腰三角形的性质.
情感与价值观要求
通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.
【教学重难点】
重点:
1.等腰三角形的概念及性质.
2.等腰三角形性质的应用.
难点:等腰三角形三线合一的性质的理解及其应用.
【教学过程】
一、提出问题,创设情境
师:在前面的学习中,我们认识了轴对称***形,探究了轴对称的性质,并且能够作出一个简单平面***形关于某一直线的轴对称***形,还能够通过轴对称变换来设计一些美丽的***案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何***形.来研究:①三角形是轴对称***形吗?②什么样的三角形是轴对称***形?
[生]有的三角形是轴对称***形,有的三角形不是.
师:那什么样的三角形是轴对称***形?
[生]满足轴对称的条件的三角形就是轴对称***形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称***形.
师:很好,我们这节课就来认识一种成轴对称***形的三角形──等腰三角形.
二、探究新知:
(一)等腰三角形的定义:
【活动1】折纸、剪纸、展纸:
观察△ABC的特点:(1)在上述过程中,△ABC被剪刀剪过的两边是否相等?
(2)由此你能说说什么是等腰三角形吗?
归纳:有两条边相等的三角形叫等腰三角形。其中相等的两条边叫腰,另一条边叫做底边;两腰所夹的角叫顶角,底边和腰所夹的角叫底角。
(二)探索等腰三角形的性质:
【活动2】观察△ABC:(1)等腰△ABC是轴对称***形吗?它的对称轴是什么?
(2)沿着等腰△ABC中AD所在的直线对折,找出重合的线段、重合的角。
归纳:性质1、等腰三角形的两个底角相等(简写成“等边对等角”)
性质2、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简记为“三线合一”)
(三)等腰三角形性质的证明:
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程.
设计说明:本课的教学内容是人教版三年制初二几何5.4节三角形相似的判定。
在充分理解教材的基础上,本节课首先在新旧知识的转折处创设有助于学生自主学习的问题情境,引导学生通过探索、交流,获得知识,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。其次,根据变式分层的思想设计具有一定跨度的问题串,组织学生进行变式训练,有效地实施分层次教学,使每个学生都得到充分的发展。
1 教学目标
1.了解三角形相似的判定定理1的证明思路和方法, 能运用判定定理1解决有关问题;
2.掌握直角三角形被斜边上的高分成的两个直角三角形彼此相似并且都和原三角形相似;
3.学会与人合作,能与他人交流思维的过程和结果;形成评价与反思的意识;
4.能积极参与数学学习活动,体验数学活动充满着探索与创造,形成实事求是的态度以及***思考的习惯。
2 教学重点和难点
重点是三角形相似的判定定理1及其应用, 难点是定理的证明方法。突破难点的关键是在于使用化归、全等变换、类比等数学思想方法。
3 教学、学法
本课采用“自主探索,合作交流”这一教学组织形式,首先从问题1入手,利用***形变换的对比手法,引导学生步步深入, 类比归纳出判定两个三角形相似的条件;然后通过一组变式题,保证学生在基础知识和基本技能的获得与一定的训练的同时,能感受到数学创造的乐趣,获得对数学较为全面的体验与理解。
4 教学过程
4.1 创设问题情景,引导学生探索导出新知识
4.1.1 问题讨论 显示问题1和问题2,组织学生分小组讨论。
问题1:如***1,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。
利用电脑课件改变DE的位置,保持∠1=∠B,得到问题2。
问题2:如***2,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。
4.1.2 小组交流与同学交流自己的想法。
鼓励学生在***思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,能在倾听别人意见的过程中,逐渐完善自己的想法,感受到与同伴交流中获益的快乐。
教师积极引导学生利用化归的思想解决问题,在学生充分讨论的基础上,对问题解决的方法小结如下:
(1)利用同位角相等,两直线平行(∠1=∠B,DE∥BC )将问题1化归到上节所学的定理;
(2)通过全等变换,将问题2化归到问题1;
电脑三维动画显示:将△ADE绕着∠A的平分线旋转180°(即将△ADE翻一面)可得到△AD′E′,(如***3所示)即△AD′E′≌△ADE,于是有∠ADE=∠AD′E′,又因为∠ADE=∠B,所以∠AD′E′=∠B,由(1)得△ADE~△ABC。
(3)学生代表口述交流问题2证明的思路,教师板书证明过程;
(4)这里由特殊到一般来探索数学规律, 是数学研究中常用的一种思想方法。
4、导出定理:我们知道三角形全等是三角形相似的特殊情况, 在上述学习的基础上,你能否类似于三角形全等用符合某种条件来判定两个三角形相似?
学生口述三角形相似判定定理1,教师板书。
(二)变式训练,引导学生应用新知识和进行创新性学习。
1.显示习题1、习题2,供学生***思考后回答。
习题1如***4,已知在△ABC中,AB=AC,∠A=36°,BD 平分∠ABC交AC于点D,请找出***中的相似三角形。
习题2如***5,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D, 找出***中所有的相似三角形。
2.教师归纳小结:
(1)习题1利用简单计算,直接运用判定定理1便可找出△ABC~△BDC;
(2)习题2与习题1的解题方法一样,但要求全面观察***形, ***中共有三对三角形相似,即直角三角形被斜边上的高分成的两个直角三角形相似。
3.电脑显示习题3,学生***练习后,小组交流,教师归纳小结。
习题3如***6,在△ABC中,点D为AC边上的一点,连结BD, 问∠ADB满足什么条件时,△ADB~△ABC。
4.电脑显示将***6中的△ADB绕点A旋转一定的角度,得到习题4。
习题4 如***7,已知∠D′=∠B,∠1=∠2,求证:△AD′B′~△ABC。
5.让学生在习题4的基础上改编一道变式题,课后交流。
这个问题的参与性较强,每个学生都可以展开想象的翅膀,按照自己思考的设计原则,编拟题目(如改变条件:将∠D′=∠B改成∠B′=∠C,结论不变;也可以将***形不变;也可以将***形变为如***8所示),感受数学创造的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解。
(三)师生共同作本节果小结。
作者介绍:郑碧星,福建德化第一中学
本文发布于:2023-05-16 05:35:31,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/82/755895.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |