cuda入门——第二个 CUDA程序

更新时间:2023-05-23 02:28:51 阅读: 评论:0

cuda入门——第二个 CUDA程序
前面介绍的计算平方和的程序,似乎没有什么实用价值。所以我们的第二个 CUDA 程序,要做一个确实有(某些)实用价值的程序,也就是进行矩阵乘法。而且,这次我们会使用浮点数。
虽然矩阵乘法有点老套,不过因为它相当简单,而且也可以用来介绍一些有关 CUDA 的有趣性质。
歌曲拯救
矩阵乘法
为了单纯起见,我们这里以方形的矩阵为例子。基本上,假设有两个矩阵 A 和 B,则计算 AB = C 的方法如下:
    for(i = 0; i < n; i++) {
        for(j = 0; j < n; j++) {
            C[i][j] = 0;
            for(k = 0; k < n; k++) {
                C[i][j] += A[i][k] * B[k][j];
            }
        }
    }
一开始,我们先准备好产生数据、设定 CUDA 等等的工作:
    int main()
    {
        float *a, *b, *c, *d;
        int n = 1000;

        if(!InitCUDA()) return 0;

        a = (float*) malloc(sizeof(float) * n * n);
        b = (float*) malloc(sizeof(float) * n * n);
        c = (float*) malloc(sizeof(float) * n * n);
        d = (float*) malloc(sizeof(float) * n * n);

        srand(0);

        matgen(a, n, n);
        matgen(b, n, n);

        clock_t time = matmultCUDA(a, n, b, n, c, n, n);

        matmult(a, n, b, n, d, n, n);
        compare_mat(c, n, d, n, n);

        double c = (double) time / CLOCKS_PER_SEC;
        printf("Time ud: %.2f (%.2lf GFLOPS)\n", c,
            2.0 * n * n * n / (c * 1E9));

        return 0;
    }外贸邮件
InitCUDA 函式和第一个 CUDA 程序一样,可以直接参考前面的文章。以下是上面用到的一些其它的函式:
产生矩阵:
    void matgen(float* a, int lda, int n)
    {
        int i, j;

        for(i = 0; i < n; i++) {
            for(j = 0; j < n; j++) {
                a[i * lda + j] = (float) rand() / RAND_MAX +
                    (float) rand() / (RAND_MAX * RAND_MAX);
            }
        }
    }
这个函式只是利用随机数生成器把矩阵填满 0 ~ 1 之间的数字。特别注意到因为 C 语言中无法声明变动大小的二维矩阵,所以我们使用 i * lda + j 的方式。
进行矩阵乘法:
    void matmult(const float* a, int lda, const float* b, int ldb,
        float* c, int ldc, int n)
    {
        int i, j, k;

        for(i = 0; i < n; i++) {
            for(j = 0; j < n; j++) {
                double t = 0;
                for(k = 0; k < n; k++) {
                    t += a[i * lda + k] * b[k * ldb + j];
                }
                c[i * ldc + j] = t;
            }
        }
    }
这是以 CPU 进行矩阵乘法、用来进行验证答案正确与否的程序。特别注意到它用 double 来储存暂时的计算结果,以提高精确度。国庆作文
验证结果:
莱芜莲花山风景区    void compare_mat(const float* a, int lda,
        const float* b, int ldb, int n)
    {
        float max_err = 0;
    float average_err = 0;
        int i, j;

        for(i = 0; i < n; i++) {
            for(j = 0; j < n; j++) {
                if(b[i * ldb + j] != 0) {
                    float err = fabs((a[i * lda + j] -
                        b[i * ldb + j]) / b[i * ldb + j]);
                    if(max_err < err) max_err = err;
                    average_err += err;
                }
            }
        }

        printf("Max error: %g Average error: %g\n",
            max_err, average_err / (n * n));
    }
这个函式计算两个矩阵的最大相对误差和平均相对误差,并把结果印出来。
最后是 CUDA 的矩阵乘法的部份:
    #define NUM_THREADS 256

    clock_t matmultCUDA(const float* a, int lda,
        const float* b, int ldb, float* c, int ldc, int n)
    {
        float *ac, *bc, *cc;
        clock_t start, end;

        start = clock();
        cudaMalloc((void**) &ac, sizeof(float) * n * n);
        cudaMalloc((void**) &bc, sizeof(float) * n * n);
        cudaMalloc((void**) &cc, sizeof(float) * n * n);

        cudaMemcpy2D(ac, sizeof(float) * n, a, sizeof(float) * lda,
            sizeof(float) * n, n, cudaMemcpyHostToDevice);
        cudaMemcpy2D(bc, sizeof(float) * n, b, sizeof(float) * ldb,
            sizeof(float) * n, n, cudaMemcpyHostToDevice);

        int blocks = (n + NUM_THREADS - 1) / NUM_THREADS;
        matMultCUDA<<<blocks * n, NUM_THREADS>>>
            (ac, n, bc, n, cc, n, n);

        cudaMemcpy2D(c, sizeof(float) * ldc, cc, sizeof(float) * n,
        sizeof(float) * n, n, cudaMemcpyDeviceToHost);


四时养生        cudaFree(ac);
        cudaFree(bc);
        cudaFree(cc);

        end = clock();

        return end - start;
    }
这个函式相当单纯,就是在显卡内存中配置存放矩阵的内存,然后把主内存中的矩阵数据复制到显卡内存上。不过,因为我们的矩阵乘法函式可以指定 pitch(即 lda、ldb、和 ldc),所以如果用一般的 cudaMemcpy 函式来复制内存的话,会需要每个 row 都分开复制,那会需要呼叫很多次 cudaMemcpy 函式,会使效率变得很差。因此,在这里我们用了一个新的 cudaMemcpy2D 函式,它是用来复制二维数组,可以指定数组的 pitch。这样就可以透过一次函数调用就可以了。
进行计算的 kernel 如下:
    __global__ static void matMultCUDA(const float* a, size_t lda,
        const float* b, size_t ldb, float* c, size_t ldc, int n)
    {
        const int tid = threadIdx.x;
        const int bid = blockIdx.x;
        const int idx = bid * blockDim.x + tid;
        const int row = idx / n;
        const int column = idx % n;
        int i;

20元人民币        if(row < n && column < n) {
            float t = 0;
            for(i = 0; i < n; i++) {
                t += a[row * lda + i] * b[i * ldb + column];
            }
            c[row * ldc + column] = t;
        }
    }
这个函式一开始先从 bid 和 tid 计算出这个 thread 应该计算的 row 和 column,在判断 row 和 column 在范围内之后,就直接进行计算,并把结果写到 c 矩阵中,是非常单纯的函式。
在 GeForce 8800GT 上实际执行的结果如下:
    Max error: 2.01484e-006 Average error: 3.36637e-007
    Time ud: 1.1560 (1.73 GFLOPS)
可以看到两个问题:
1.很明显的,执行效率相当低落。
2.最大相对误差偏高。理想上应该要低于 1e-6。
计算结果的误差偏高的原因是,在 CPU 上进行计算时,我们使用 double(即 64 bits 浮点数)来累进计算过程,而在 GPU 上则只能用 float(32 bits 浮点数)。在累加大量数字的时候,由于累加结果很快会变大,因此后面的数字很容易被舍去过多的位数。
语段摘抄
由于 CUDA 的浮点数运算,在进行加、减、乘法时是符合 IEEE 754 规定的精确度的,因此,我们可以利用 Kahan's Summation Formula 来提高精确度。把程序改成:
    if(row < n && column < n) {
        float t = 0;
约分的概念        float y = 0;
        for(i = 0; i < n; i++) {
            float r;
            y -= a[row * lda + i] * b[i * ldb + column];
            r = t - y;
            y = (r - t) + y;
            t = r;
        }
    }
修改后的程序的执行结果是:
    Max error: 1.19209e-007 Average error: 4.22751e-008
    Time ud: 1.1560 (1.73 GFLOPS)

本文发布于:2023-05-23 02:28:51,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/739547.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:矩阵   进行   乘法   程序   内存   计算   结果   函式
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图