二元一次方程和二元一次函数 一次函数与二元一次方程怎么解(6篇)

更新时间:2023-05-22 20:10:00 阅读: 评论:0

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

二元一次方程和二元一次函数 一次函数与二元一次方程怎么解篇一

学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:

1.初步理解二元一次方程和一次函数两种数学模型之间的关系;

2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;

3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系.

教学重点

二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;

教学难点

通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

第一环节:探究二元一次方程和一次函数两种数学模型之间的关系

1.某水箱有5吨水,若用水管向外排水,每小时排水1吨,则x小时后还剩余y吨水.

(1)请找出自变量和因变量

(2)你能列出x,y的关系式吗

(3)x,y的取值范围是什么

(4)在平面直角坐标系中画出这个函数的图形.(注意xy的取值范围).

2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?

(2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数y=5-x的图象上吗?

(3).在一次函数y=x5的图像上任取一点,它的坐标适合方程x+y=5吗?

(4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=x5的图像相同吗?

x+y=5与y=x5表示的关系相同

一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.

目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=x5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节自主探索方程组与一次函数两种数学模型之间的关系

探究方程与函数的相互转化

1.两个一次函数图象的交点坐标是相应的二元

一次方程组的解

(1)一次函数y=5-x图象上点的坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?

(2)两个函数的交点坐标适合哪个方程?

xy5(3).解方程组验证一下你的发现。 2xy1

练习:随堂练习1 。巩固由一次函数的交点坐标找相应的二元一次方程组的解。

2.二元一次方程组的解是相应的两个一次函数图象的交点坐标。

xy2(1)解

2xy5(2)以方程x+y=2

(3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?

(5目的:通过自主探索,使学生初步体会“数”(二元一次方程组的解)与“形”(两条直线)两种模型之间的对应关系,

由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力.

练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。

第三环节模型应用

1.某公司要印制产品宣传材料.

1500元制版费.甲印刷厂:每份材料收1元印制费,另收乙印刷厂:每份材料收2.5元印制费,不收制版费.若公司要印制x份宣传材料,y甲表示甲印刷厂的费用,y乙表示乙

印刷厂的费用。

(1)请分别表示出两个印刷厂费用与x的关系式。

(2)在同一直角坐标系中画出函数的图象。

(3)如何根据印刷材料的份数选择印刷厂比较合算?

第四环节模型特例

想一想

内容:在同一直角坐标系内,一次函数y = x + 1和y = x - 2的图象(教材xy1124页图5-2)有怎样的位置关系?方程组解的情况如何?你发现了什xy2

么?

二元一次方程的解和相应的两条直线的关系2.

(1)观察发现直线平行无交点;

(2)小组研究计算发现方程组无解;

(3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;

(4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。

目的:进一步揭示“数”与“形”转化关系.通过想一想,将两直线的另一种位置关系:平行与方程组无解相结合,这是对第二环节的有益补充。体现了从一般到特殊的的思想方法,有利于培养学生全面考虑问题的习惯.

进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与k的关系。

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节课堂小结

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

以二元一次方程的解为坐标的点都在相应的函数图像上;

一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

方程组的解是对应的两条直线的交点坐标;

两条直线的交点坐标是对应的方程组的解;

第六环节作业布置

习题5.7

二元一次方程和二元一次函数 一次函数与二元一次方程怎么解篇二

1.使学生初步理解二元一次方程与一次函数的关系

2.能根据一次函数的图像求二元一次方程组的近似值

3.能解二元一次方程组的方法求两条直线的交点坐标

1.用作图像法求二元一次方程组的近似值

2.用解二元一次方程组的方法求两条直线的交点坐标

1.做图像时要标准、精确,近似值才接近

2.解二元一次方程组时计算准确,方法适宜

先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

自主学习部分:

问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。

(2)在直角坐标系中分别描出以上这些解为坐标的点,它们在一次函数y=5-x的图像上吗?

(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?

(4)以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=5-x的图像相同吗?

(5)由以上的探究过程,你发现了什么?

问题2.(1)在同一个直角坐标系内分别作出一次函数y=5-x和y=2x-1的图像,这两个图像有交点吗?如果有,写出交点坐标?

(2)一次函数y=5-x和y=2x-1的交点坐标与方程组的解有什么关系?你能说明理由吗?

(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

合作探究:

(1)用做图像的方法解方程组

(2)用解方程的方法求直线y=4-2x与直线y=2x-12交点

二元一次方程和二元一次函数 一次函数与二元一次方程怎么解篇三

本节教学内容是《二元一次方程与一次函数》,这节课以“回顾,提问”为先导,以“操作,思考”为手段,以“数,形结合”为要求,以“引导,探究”为主线,处处呈现出师生互动,生生互动的景象,较好地体现了新的课程理念与要求,充分让学生自主探究,合作交流,时刻注重学生学习过程的体验与评价。新的课程标准提出:数学教学活动必须建立在学生的认知发展水平和已有的生活经验基础之上,教师应帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、教学思想和方法,获得广泛的数学活动经验。由此,我设计了本节课的教学设计,基于上完课后的感想,我对本节课有如下的反思:

1、从旧识引入,自然过渡

这节课由复习一次函数解析式和二元一次方程的形式引入,再提出x+y=5是一次函数还是二元一次方程这一问题,进而引出本节课的第一个内容,激发了学生的兴趣,使他们更快的融入课堂。

2、在操作中,提出问题,深化认识

对于此阶段学生来说,他们乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生主动发现问题,本节课我让学生亲自动手操作画出一次函数的图像,并解出二元一次方程的解,在画图过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图像上”,接着引导学生反思:“一次函数图像的点坐标都适合相应的二元一次方程吗?”通过举例、验证,得出结论。同样,在探索二元一次方程组与一次函数关系时,也是在操作中发现问题,这样就给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。

3、以能力培养为核心,引导探索为主线,数形结合为要求

能力的培养是以自主探究为平台,我通过让学生小组交流合作并讨论来解答几个问题,进而得出结论,培养了他们的发现、分析、解决问题、归纳总结的能力。再由二元一次方程与一次函数的关系进一步扩展到二元一次方程组与一次函数的关系,层层递进,学生基本掌握了本节课的重点、难点问题。通过总结二元一次方程组的解法:加减、消元、图像法,通过分析他们的优缺点可知图像法得出的解是近似的这一结论,让学生又体会到了数学的严谨性。在教学过程中,我充分渗透了数形结合的思想,让学生体会了数学的美。

1、学生自己画图时不好确定交点坐标,在做这样的题时,就一定会存在如何确定交点的精确度问题,从而使学生会认为应用图像法来解二元一次方程组的方法无用处,进而不重视本节课的内容。

2、教学过程中,在探索二元一次方程与一次函数关系时,提出的问题与ppt课件中展示的问题部分重复了,浪费了一些时间,板书设计不够简洁。

1、对于交点坐标问题,应该跟同学们讲解清楚,我们要求的是掌握这个解二元一次方程组的图像解法,我们借助科学技术很容易画出一次函数的图像,也就容易找到交点的精确坐标。此外,一般来说如果考试当中是会给出交点的坐标。

2、重新整理资料,将一些重复问题删去,提取结论中一些重点语句,关键词,板书做到精炼。

二元一次方程和二元一次函数 一次函数与二元一次方程怎么解篇四

(一)教材的地位和作用

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。

(二)教学目标

新一轮的课程改革,旨在促进学生全面、持续、和谐的发展,我认为本节课的.教学应达到以下目标:知识技能方面:理解一次函数与二元一次方程组的关系,会用图象法解二元一次方程组;

数学思考方面:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去思考问题;

解决问题方面:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题;

情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。

(三)教学重、难点

从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。

《数学课程标准》明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境—探究式教学法,以“情境――问题――探究――交流――应用――反思――提高”的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。

本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入——探究合作——解决问题——巩固提高——归纳小结——布置作业。

这节课,我首先用贴近学生实际、学生感兴趣的问题——上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。

为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程

转化为一次函数的形式呢?”“如果能,你们能在平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

紧接着问学生:“你能用刚才的方法研究另一个方程2x—y=1吗?”学生在同一坐标系中画出一次函数y=2x—1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。

这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的情感体验。

为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的求知欲望和主人翁的学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识——方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。

学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察图象的特征,学生讨论后发现当0 ≤ x < 400时,红色点在蓝色点的上方;当x=400时,红色点与蓝色点重合;当x>400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y>0,y=0及y<0时所对应的x的范围,进而得到答案。通过对实际问题的探究,学生可以发现图象法的直观性,体会数形结合这一思想方法的应用,并学会用函数的观点,动态地分析不等式和方程(组)。

为了巩固学生的学习成果,我把刚刚结束不久的铁山矿冶文化旅游节带进课堂,让学生欣赏一组美丽的黄石矿冶文化景点图片,在学生体验家乡美好的轻松愉快氛围中,我再一次出示了一个与之有关的旅游购票问题,并鼓励学生用不同的方法进行解答,进一步培养学生应用数学的意识,从而更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

在课堂临近尾声时,引导学生对本节课所学进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。尝试开放式课堂教学,以真正体现学生的主体地位,使课堂活动民主化,多样化。

本节课的作业由必做题和选做题组成,体现分层教学,让不同的学生在数学上得到不同的发展。

这节课,我始终贯穿以学生为主体的原则,突出数形结合的思想,体现数学建模的价值,渗透应用数学的意识,关注学生个性的发展,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的学生在数学的各个不同方面上都得到不同的发展。

二元一次方程和二元一次函数 一次函数与二元一次方程怎么解篇五

1、教材的地位和作用

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

(一)感知身边数学

多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式a以每分钟0.1元的价格按上网时间计费;方式b除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣

1、探究一次函数与二元一次方程的关系

填空:二元一次方程可以转化为________。

思考:(1)直线上任意一点一定是方程的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

2、探究一次函数与二元一次方程组的关系

(1)在同一坐标系中画出一次函数和的图象,观察两直线的交点坐标是否是方程组的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

(2)当自变量取何值时,函数与的值相等?这个函数值是什么?这一问题与解方程组是同一问题吗?

进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车

例题:我市一家电信公司给顾客提供两种上网收费方式:方式a以每分0.1元的价格按上网时间计费;方式b除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。

解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦

1、抢答题

(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

2、旅游问题

古城荆州历史悠久,文化灿烂。今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式a是团队中每位游客按8折购买;方式b是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地

1、数学日记

姓名日期

二元一次方程和二元一次函数 一次函数与二元一次方程怎么解篇六

1.知识与能力目标

(1)二元一次方程和一次函数的关系。

(2)二元一次方程组的图象解法。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

方程和函数之间的对应关系即数形结合的意识和能力。

学生操作——————自主探索的方法

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程组和“形”————函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

一.故事引入

迪卡儿的故事——————蜘蛛给予的启示

十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。

二.尝试探疑

1、y=x+1

你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

2、函数y=x+1上的任意一点的坐标是否满足方程x—y=—1?

以方程x—y=—1的解为坐标的点在不在函数y=x+1的图象上?方程x—y=—1与函数y=x+1有何关系?

学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x—y=—1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x—y=—1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程x—y=—1。

然后学生会用同样的方法得出另一个结论:以方程x—y=—1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x—y=—1到底有何关系呢?通过交流自动得出结论:以方程x—y=—1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

3。在同一坐标系下,化出y=x+1与y=4x—2的图象,他们的交点坐标是什么?

方程组y=x+1的解是什么?二者有何关系?

y=4x—2

学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x—2的交点坐标就是由两个函数表达式组成的方程组

y=x+1的解。

y=4x—2

教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

三.方程与函数关系的应用

解方程组x—2y=—2

2x—y=2

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1。把两个方程都化成函数表达式的形式。

2。画出两个函数的图象。

3。画出交点坐标,交点坐标即为方程组的解。

问题又出来了,有的同学的解是x=2有的同学的解是x=2。1 y=2。1

y=1。9有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用z+z智能教育平台演示一下。

[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四.引申

方程组x+y=2

x+y=5解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五.课后小结

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程与“形”——————函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六.作业

1。用作图象法解方程组2x+y=4

2x—3y=12

2。如图,直线l、l相交于点a,试求出a点坐标。

本文发布于:2023-05-22 20:10:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/736059.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:方程   函数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图