人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
初中数学一元一次方程说课稿篇一
大家好!今天说课的内容是人教版义务教育教科书七年级数学(上)3.1.1一元一次方程(第1课时)。下面,我将从以下五个方面对本节课的设计进行说明.
1、教材所处的地位和作用:
从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法.
《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.
2、教学目标:
根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:
知识技能目标
①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.
②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.
③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.
数学思考目标
用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决.
情感价值目标:
让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情.
3、重点、难点:
结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点.
教学重点:知道什么是方程、一元一次方程,找相等关系列方程.
教学难点:思维习惯的转变,分析数量关系,找相等关系。
如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:
1、生活引路,感知概念背景;
2、比较方法,明确意义;
3、感受过程,形成核心概念;
4、运用新知,巩固方法;
5、归纳总结,巩固发展。
本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型.采用教师引导,学生自主探索、观察、归纳的教学方式。
根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法.通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力.
本节课的教学过程我设计了以下六个环节:
(一)情景引入
采用教材中的情景
在这个环节中我提出了三个问题:
问题1:从上图中你能获得哪些信息?
问题2:你会用算术方法求吗?
问题3:你会用方程的方法解决这个问题吗?
(二)学习新知
在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为x千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题。
通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在。
然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念。
解决实际问题的步骤:
(1)用字母表示问题中的未知数;
(2)根据问题中的相等关系,列出方程。(17世纪的法国数学家迪卡尔最早使用x,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族。)
在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现.
方程的概念:含有未知数的等式叫方程.小学里已经给出了方程的概念,这里可适当处理.
在这里我开始向学生渗透列方程解决实际问题的思考程序.
(三)讨论交流
讨论1:比较列算式和列方程两种方法的特点。
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.
而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。
紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维.
讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?
在这个讨论活动中,我采取了先小组合作交流后全班交流。
通过交流后,学生中出现如下结果:
从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元.
要求出路程,只要解出方程中的x即可,我们在以后几节课中再来学习。
在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。
(四)初步应用
学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。
1、例题:根据下列问题,设未知数并列出方程:
(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。
(五)再探新知
提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.
在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念
教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.
思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质.
(六)课堂小结
让学生先归纳,然后教师补充方式进行,主要围绕以下问题:
本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?
本节课着力体现以下几个方面:
1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。
2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。
3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。
4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。
初中数学一元一次方程说课稿篇二
《新课程标准》要求:能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。由课标要求我们可以看出:列方程解决实际问题这是贯穿一元一次方程全章教学的主旋律。本节是新课程下的概念课,融入了广阔的生活背景,凸显应用意识,这就要求在教学中选取贴近学生生活实际的丰富实例,调动学生积极思考列出方程,让概念教学充满生活气息,在此基础上通过观察、比较,提炼概括出本质属性,让概念的发现过程是一个探究之旅。
方程是应用广泛的数学工具,是代数学的核心内容。《一元一次方程》承接小学学习的简易方程和刚刚学习的整式的加减(包括列代数式),又是后续学习其它代数方程的重要基础。本节作为《一元一次方程》全章的起始课,这对于激发学生学习方程的兴趣,获得解决实际问题的基本方法具有十分重要的作用。
同时方程的悠久历史具有十分深刻的思想教育内涵,早在2000多年前,我国人民就总结出了关于方程的著作《九章算术》;在公元1248年,元朝数学家李治撰写的《侧圆海镜》是世界上最早的用符号代替文字表示方程的著作。这些充分体现了中华民族的聪明才智,对于激发学生的民族自豪感,从小树立振兴中华的远大理想都有着十分重要的意义。
人教版《一元一次方程》全章将用方程解决实际问题贯穿全章始终。本节内容是《一元一次方程》的起始课,是一节概念课,教材首先通过解决一个行程问题,体会由算术到方程是数学的一大进步,接着通过用方程解决三个实际问题,在此基础上得出一元一次方程的概念,并总结用方程解决实际问题的一般步骤。
知识与技能:了解一元一次方程的有关概念。体会由算式到方程是数学的一大进步。
数学思考:经历列方程表示实际问题的相等关系的过程,体会数学化的思想方法。
解决问题:通过画示意图、列表格等方法分析实际问题中数量关系,会用方程表示简单实际问题的相等关系。
情感与态度:结合具体的问题情境,激发学生学习数学的兴趣。结合数学史的知识,激发学生的民族自豪感。
教学重点:结合问题情境抽象一元一次方程概念
一元一次方程的学习对于后续学习其它方程有着指导意义,同时也蕴涵着深厚的文化价值。因此将结合问题情境抽象一元一次方程概念作为本节教学的重点。
教学难点:实际问题的数学化过程
同时本节是新课程背景下的概念课,一元一次方程的概念与实际问题密切联系在一起,因此将实际问题的数学化过程作为本节教学的难点。
普通农村中学学生数学合格率不高,有相当一部分学生对数学学科不感兴趣,基本数学知识与技能不达标。从生命的高度关注全体学生,提高全体学生的数学水平,磨练学生永不放弃的意志有着十分重要的意义.所以在教学中应通过多种手段激励全体学生努力向上。
七年级学生正处于感性认识向理性认识过渡的时期,抽象思维能力有待提高。对于一元一次方程的概念教学要选取具体的问题情境,逐步抽象。
七年级学生对于方程已经具备了一定的知识基础,但是对于方程的还比较肤浅、模糊,还处于感性层面,缺乏理性的认识和把握。
对于本节教学的重点——结合问题情境抽象一元一次方程概念。《数学课程标准》明确指出:抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。在概念教学中如何激发学生的学习兴趣?一方面要挖掘概念在生活中的源头活水,选取贴近学生实际的生活问题。另一方面通过教师启发、师生问答明确概念的内涵和外延,让概念的形成过程是一个充满探索的发现之旅,让学生体验到探索成功的喜悦。
对于本节教学的难点——实际问题的数学化过程。新课标指出:“要关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展。”为了突破实际问题中数量关系的分析这一难点,通过示意图将生活问题抽象为数学问题,通过列表格将数学问题分解为表示数量关系问题,渗透用方程表示实际问题相等关系的数学建模思想,采用“教师引路—自主探路—合作修路—共同走路”的探究线路,为不同层次的学生提供思考锻炼的机会,从而实现不同的人在数学上得到不同的发展。
为了激发学生的探究兴趣,培养学生的自主探究能力,有效达成教学目标,我采用如下教法和学法:
情境教学法:
情绪心理学研究表明,个体的情感对认知活动有动力、强化、调节等功能。借助多媒体演示创设贴近学生生活的问题情境,引发学生积极健康的情感体验;利用启发式教学引导学生在自主探究、合作交流中发现新知、解决问题,逐步培养能力。
面对当前农村初中数学学生合格率低,学习兴趣不浓等现状,针对教材和学情,在本课中进行了如下探索:
一、让数学散发魅力
张奠宙教授曾经提出:数学教学的目标之一是要把数学知识的学术形态转化为教育形态,通过数学知识的教育形态散发出数学的巨大魅力,体现数学的价值,揭示数学的本质,感染学生,激励学生,让数学“冰冷的美丽”唤发学生“火热的思考”。设计贴近学生生活的实际问题;对“天元术”历史背景的挖掘;极具挑战的登山作业;关注生命价值的教师寄语。学生积极思考,兴趣浓厚,强烈感受到原来数学也如此美丽!
二、让收获激励前行
在数学课堂上如何照顾不同层次的学生?一节课还要选取重点内容进行分层探究,让不同层次的学生都有收获,从而激发他们学好数学的信心。本节课中在解决行程问题时就采取了“教师引路—自主探路—合作修路—共同走路”探究线路,实现了不同层次的学生都得到了发展。
三、让数学磨练意志
学习数学对于学生将来走向社会不单单是要用到知识,其实更为重要的是在学习数学过程中形成的意志品质。学生在面对学习困难时的态度和勇气,克服学习困难的毅力和方法对于学生的将来至关重要。本节课设计的挑战珠峰登山作业目的是培养全体学生永不放弃、努力向上的优秀品质。
四、让思想指引未来
教学的终极目标决不仅仅是为了考试,更为重要的是培养思想远大、担负民族复兴重任的建设者。数学课堂上如何实现这一目标?通过具体可感、打动学生内心世界的活动才能实现,本课中用“天元术”解决现实问题,具有人生高度的教师寄语,极具挑战的登山作业都收到了较好的教育效果。
采取以上措施力图“让数学课堂彰显生命的色彩!”
初中数学一元一次方程说课稿篇三
方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。
1、教学目标
(1)、知识目标:
1、掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程
2、了解一元一次方程解法的一般步骤
(2)、能力目标:经历"把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,
(3)、情感目标:
1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望
2、通过埃及古题的情境感受数学文明。
2、教学重点:通过"去分母"解一元一次方程
3、教学难点:探究通过"去分母"的方法解一元一次方程
4、教学关键:找最简公分母、合并同类项
在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。
我的教学设计的指导思想是:
1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。
2、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。
本课时主要让学生分析、观察、归纳出用等式基本性质二,让学生进一步解答方程中系数为分数时,如何使其“整数化”,从而化归到上课时见过的方程类型上去。
纵观这三节课的安排,在内容的呈现顺序上让我们感觉到了:
(1)数学知识的阶梯性。新内容的学习解答过程,总是借助一些已知的知识与方法,将其转化,让旧知识服务于新内容;
(2)数学知识的规律性。解方程中方程的类型多种多样,但它的解法过程,有一个常见的规律,“去分母,去括号,移项,合并同类项,将未知数的系数化为1,把一元一次方程转化为x=a(a为常数)的形式。”
(3)运算过程的技巧性。如解方程时,解法有:
①可以先去括号,整理后去分母;
②可以去括号后,不去分母,直接求解;
③先去分母,再去括号。经检验,三种方法都很好。
④运算过程的合理性。
如:解方程时,去分母要计算正确,就必须清醒地知道,“方程两边同时乘以6”意义是什么。
总之,本部分内容要求学生掌握解一元一次方程的基本思路:灵活运用解一元一次方程的步骤,将“复杂”转化为“简单”,把“陌生”转化为“熟知”。
②可以去括号后,不去分母,直接求解;
③先去分母,再去括号。经检验,三种方法都很好。
④运算过程的合理性。
本节课设计了五个教学环节:第一环节:学生自学,独立自主;第二环节:教师讲解,示范作用;第三环节:讨论研究,深入理解;第四环节:课堂小结;第五环节:布置作业;第六环节:小测
第一环节:学生自学,独立自主
先创设问题情境:古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了在文书中记载了许多有关数学的问题。
问题一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。(板书)
(1)能不能用方程解决这个问题?
(2)能尝试解这个方程吗?
(3)不同的解法有什么各自的特点?
设计意图:利用列方程、解方程解决实际问题,再一次让学生感受方程的优越性,提高学生主动使用方程的意识
让学生自学课本p178例题5,培养学生自学能力,同时提高学习效率(时间5分钟)
第二环节:教师讲解,示范作用
(一)例5解方程
解法一:去括号,得
移项、合并同类项,得
两边同时除以(或乘以),得
x=—28
解法二:去分母,得
4(x+14)=7(x+20)
去括号,得
4x+56=7x+140
移项、合并同类项,得
—3x=84
两边同时除以—3,得
x=—28
(二)讲解课前提出的问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。
列出方程
经过对同一方程不同解法到去分母能够使解方程的过程更加便捷,明白为什么要去分母,这是"去分母"这一步骤的必要性;同时,让学生认同"去分母"是科学的、可行的,明确为什么能去分母这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现"方程两边同时乘以所有分母的最小公倍数"这一方法,也首次由学生自行突破了难点。
第三环节:讨论研究,深入理解;
内容:本课时的想一想、例题6及练习题1、(3)、(5)、(6),分析它们的解答过程。
目的:1、进一步体会规范做题对解题的严谨、准确的积极影响作用。
2、对于较复杂的方程,培养学生自觉反思求解过程和自觉检验方程解是否正确的良好习惯。
3、让学生自觉发现解方程的方法,是他们体会解法步骤可以灵活多样,但其基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”。
实际效果:
1、学生在分析例6:解方程的解题过程时,认为采用上课时的解题的方法——先去括号,再求解的方法,运算量比先去分母,再去括号求方程解要大的多,且容易出错,学生自然地接受了去分母的思想与方法。同时在分析过程中提出:去分母时,依据等式的基本性质二,要让各分母的最小公倍数同时乘以方程两边的`每一项。
如:上例去分母以后得
6(x+15)=15—10(x—7)
此过程也显示了学生解题过程的规范性。
2、在对方程的解题过程分析中,有的学生认为不去分母直接写成:
x=8
也比较方便。学生转化代数式,合并同类项等方面的运算能力较过关,他们处理问题的方法也较灵活。
3、教学过程学生讨论热烈,尤其是每一步解题过程的正确,增强了自信心,肯定了自己的许多想法,形成了许多解决问题的有效的方法。
第四环节:课堂小结
内容:交流本节课的收获
目的:
1、小结本课时的知识点
2、使学生理性地归纳解一元一次方程的解法思想与解法思路
3、在生生、师生的交流过程中,欣赏别人的优秀之处,让学生充分展示自己。
实际效果:
学生们不仅将近几节课学的解一元一次方程的思想方法给予适当的小结归纳。而且对例6解题的每一步都说出它的变形依据,充分看出了他们研究数学问题的思维方式。同时还提出其他类型一元一次方程的解题方法与技巧。
第五环节:布置作业
课本p178,习题5.5的知识技能(1)、(2)、(4)、(5)、(8)及问题解决1
第六环节:小测,检查学生学习情况
解下列方程:(5分钟)
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同参与发展的过程。本节课的评价要让学生体会到参与学习、与人合作的重要性,获得成绩的喜悦,从而激发性的学习动力。在这节的数学课,如要获得最直接、真实的反馈,就要尽量让学生多说、多思考,对于学生提出的问题和解决问题的方法,教师都要给予鼓励和引导,并随时观察解决,评价应充分考虑到每个学生的差异,这节课通过现代化的技术的运用,节省出尽可能多的时间,提出挑战性的问题,让学生通过开放式的数学讨论提高学生学习的兴趣,在交流中获益。通过随堂练习和作业来激励其学习。同时做练习时,将评价及时反馈给学生,树立学习数学的自信心,促进学生的进一步发展。并在课后作成长记录,使学生比较全面了解自己的学习过程,特别感受自己的不断成长和进步,为下一步教学提供重要依据。
初中数学一元一次方程说课稿篇四
在过去的几年中,开展素质教育已取得了一定的成绩,众多教育工作者对教学方法、教学结构、教学评价等问题作出了深刻的反思和改革。尤其是99年6月份召开的第三次全国教育工作会议,中共中央、国务院颁发了《关于深化教育改革,全面推进素质教育的决定》,进一步明确了教育改革的实质,并赋予了素质教育时代的特征和新的内涵。素质教育的核心是创新教育和学生实践能力的培养。
新的九年义务教育全日制初级中学《数学教学大纲》明确指出,“能够解决实际问题”是指:能够解决有实际意义的和相关学科中的数学问题,以及解决生产和日常生活中的实际问题;能够使用数学语言表达问题、展示交流,形成用数学的意识。
又增设“初中数学中要培养的创新意识”主要在是指:对自然界和社会中的现象具有好奇心,不断追求新知、独立思考,会从数学的角度发现问题和提出问题,并用数学方法加以探索、研究和解决。
要在学校教育过程中,贯彻这一精神。课堂教育就必须有创新的情景和学生主动参与学习的积极诱因。也就是说,课堂教育必须创设一个符合学生身心发展特点的、适合教育规律的和生动活泼,让学生积极主动发展的情境。
因此,近期我们不断探索新形势下的课堂教学,下面就让我通过“一元一次方程的应用——追及问题”的教学设计,展示我们对问题的思考和实践,向在座的领导、专家请教,并衷心的希望你们给我提出宝贵的意见,改进我们的教学,进一步提高教学效益。
1、学而时习之。
2、新课当旧课上。
3、重视引导学生再创造,再发现。
4、突出学习和强度,角度和反思。
5、创设情景,让学生主动积极参与。
“学而时习之”就是说,通过反复地、多次地进行对知识的复习、巩固,提高学习能力,使知识学习呈螺旋式结构。这是符合人的认知规律的。这里我们具体设置了三种类型的题目。
(1)、对知识进行系统的复习。例如课前训练一中的1-6题与13-15题,作业部分的1-5题,通过对以往学习的知识进行系统复习,使基本技能再形成。
(2)、过去学生经常出错,疑难的重要知识点进行析疑、再次理解。例如:课前训练一,第7-10题和作业第6-10题,我们有意设计一些隐藏错误或缺漏的题目让学生养成质疑的习惯和能力,对自己学习严格要求,并时常进行反思,这也是创造性思维的发展的基础。
(3)、练题例如课前训练11-12题,作业11-15题,都是以大题小做的形式出现,让学生了解哪一些是关键之处,通过局部训练提高学生学习的强度。
有些老师认为训练题的题量不少,学生在课堂上完成吗?但我们在求学生定时不定量目的是为不同层次学生提供了更多的空间。在教学实践,不少教师都埋怨学习学生的知识遗忘率大,学习的内容有章节性和阶段性,针对这些问题,我们采用学而时习之的思想。但不是说要在3分钟过后,我们不论学生完成实践了多少都让学生必须进入课堂训练二的部分。
这里具体体现在课前训练二上,这里遵循了从人的学习规律而设计的。古人云:“温故而知新。”因此,把新课当旧课上,让学生在教师创设的情境下,完成一组递[进的变式的训练课。让学生在不知不觉中学习了新课。另外,把现代数学手段引进课室,通过电脑的声、色、象等功能,把动态与静态的结合起来,使不能完整看到的现实问题,再次呈现眼前。
第1题是相遇问题,通过电脑模拟情境,让学生进一步对相遇问题的本质有深刻的理解,并复习解应用题的一般思维习惯与解题步骤,强化学生的实践路和找相等关系的能力,为本节学习打下坚实的基础。
问题1在第1题中改变条件,产生了不同于相遇问题的新情况,重点是让学生知道追是及有一定条件下的。
问题2在问题1的基础上改变了条件。从不同角度、不同方向去同向追及问题作全面的正确的分析,通过电脑模拟,直观地反映两种情况的数量关系和本质。第一种,随着时间增加,距离越越大,也不能追及。第二种,随着时间的增加,距离越来越短,有可能追及。然后再与问题1结合在一起,通过对比向学生交待一个追及问题必须具备的三个条件:
1、速度不同;
2、快者追慢者;
3、同方向。
让学生观察模拟后,加以想象、分析,先画出线略图再完成局部训练题,弄清追及问题的数量关系。
而问题3,实质是问题2中的追及问题,不同的只是甲、乙两人的距离,不是本身固有的,是通过先后出发而产生的。也就是说;“把两人相距40千米“用“让乙早出发12分钟“代替,其实,还是将问题3回复到问题2上。
在这里我们对本节例题作适当的处理,把原例题放入a组练习中,使学生在不知不觉中解决了本几节的问题。打破了传统教学中例题一定在讲解的习惯。整个训练二,以一题多变化作为新课当旧课上的切入点,创设一个让人学得轻松,学得容易,学有所得的氛围。
为了发挥分层教学的优势,我们设计了两种层次的题目,定时不定量要求各层次的学生完成。从而使学生在一节课内,不同趣点,不同在求地在原有基础上得到巩固和发展,让学生有收获感、满足感,提高对学习的兴趣。
a组训练题是本节知识的直接运用,面向全身学生,要求每个学生都掌握本节基本技能的方法。
第1、2题用填直线型示意图和填表的形式让学生弄清已知与未知之间的关系,把实际问题建立抽象的,科学的数学模型。
b组训练题较a组灵活,适用于学有余力的学生。
(1)-(3)题是通过对a组题目进行变成训练形成的。因为是通过题型多样化,让学生从多角度去思考问题而后用局部与全过程相结合,多渠道拓展学生的视野。
第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性。
第(5)题,把常规的追及问题变为一个人,自身追及问题,这题比较注重思维训练,目的是培养学生“发现问题、提出问题”的能力,并注重联系实际,注重应用数学,保证了数学成为再创造、再发现的教学。从而使学生从定势思维过渡到发散性思维。从不同角度地让学生分析问题,充分体现了学习的强度,让学生始终处于一个主动参与的状态。
同样这里也是限时20分钟,但并不是说,在20分钟学生必须全部完成,学生因应自己的情况,有选择的进行练习。
以上不同起点的练习设置,不但照顾了差生,解放了优生,同时也调动了中层学生的积极性,达到抓两头,促中间的效果。
在当今的社会,人必须有时间观念、竞争意识和社会责任感,而学习就必须有速度和强度。所以我们设置了限时训练和反馈卡。目的是为了让学生对自己的事负责,促使他们有一个时间观念。从而提高解题速度,并与其他的同学产生一种竞争意识,形成一个良好的学习环境和学习风气。
俗语说:“授人以鱼,不如授之以渔。”所以教师在教学过程中,要让学生从“学会”到“会学”就必须在教学中体现学习的角度。也就是说,必须培养学生思考和解决问题要从多角度进行,强化联系,强化转换。所以我们在引入训练时运用变式,分类讨论的形式。目的是培养学生分析、思考的角度性。在练习的设计上,通过局部训练,填图或填表弄清题目的已知与未知的关系,培养学生审题的角度。而b组题主要是培养学生思维的角度,使优生有更多的空间去提高解题能力,学会多角度去思考问题。通过更高层次的要求,锻炼了优生思考问题的零活性。
在教学过程中要体现学习的强度,就必须在课内利用一切的时间,对本课内容进行多次的、反复的训练,以达到熟练和应用自如的强度,具体表现在本节重点和难点的反复,大容量的局部训练和具有层次安排的题组训练上。
例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的。
又如:练习中的局部训练。在一堂课,只有45分钟,时间是有限的,老师不能面面区到的为学生讲解全部知识,只能有针对性的集中解决本节的重点和难点,这就要求通过局部训练来强化学生的基本技能的形成。进一步体现在教学过程中“生为主体,师为主导”的指导思想。
另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中。这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。
“学问”的意义就是在学习过程中必然有问题存在,并且要主动的通过多种渠道解决问题,扫除成长中的障碍。
作业中反思的设计,是培养学生对自己严格要求,通过对所学知识的回顾、反省,并不断好问、好思的解决问题,从而培养学生的质疑能力。
学生学习最好的动力是对素材的兴趣。所以,我们在整个教学过程中为学生创设了情境,把数学问题溶入到一个与他们密切相关的生活问题中,使学生形成浓厚的学习兴趣和求知欲望。
本文发布于:2023-05-22 05:01:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/82/728040.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |