最新函数 教案(14篇)

更新时间:2023-05-19 04:58:00 阅读: 评论:0

作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么我们该如何写一篇较为完美的教案呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

函数 教案篇一

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

过程:

1.设矩形花圃的垂直于墙的一边ab的长为xm,先取x的一些值,算出矩形的另一边bc的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中,

ab长x(m)123456789

bc长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当ab的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的ab的长,填出相应的bc的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当ab的长为5cm,bc的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当ab=xm时,bc长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?

在这个问题中,可提出如下问题供学生思考并 回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元?

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

5.若设该商品每天的利润为y元,求y与x的函数关系式。

将函数关系式y=x(20-2x)(0 <x <10=化为:

y=-2x2+20x (0<x<10)……………………………(1)

将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:

y =-100x2+100x+20d (0≤x≤2)……………………(2)

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?

(分别是二次多项式 )

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及p1页的问题2有什么共同特点 ?

让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

1.(口答)下列函数中,哪些是二次函数?

(1)y= 5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.p3练习第1,2题。

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。

函数 教案篇二

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

理解并掌握诱导公式.

正确运用诱导公式,求三角函数值,化简三角函数式.

“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

在本节课的教学过程中,本人引导学生的学法为思考问题 共同探讨 解决问题 简单应用 重现探索过程 练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

1.复习锐角300,450,600的三角函数值;

2.复习任意角的三角函数定义;

3.问题:由 ,你能否知道sin2100的值吗?引如新课.

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

1. 让学生发现300角的终边与2100角的终边之间有什么关系;

2.让学生发现300角的终边和2100角的终边与单位圆的交点为 、 的坐标有什么关系;

2100与sin300之间有什么关系.

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.

函数 教案篇三

在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。 在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

1 .注重“类比教学” 在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由 “ 学会 ” 到 “ 会学 ” ,真正实现 “ 教是为了不教 ” 的目的.

2. 注重“数学结合”的教学

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

( 1 )让学生经历绘制函数图象的具体过程。

( 2 )切莫急于呈现画函数图象的简单画法。

( 3 )注意让学生体会研究具体函数图象规律的方法。

目标

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会选择两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.

过程与方法目标

1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

一次函数的图象和性质。

由一次函数的图像归纳得出一次函数的性质及对性质的理解。

函数 教案篇四

《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。

本节教学时间安排1课时

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.

3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。

2.通过学生共同观察和讨论,培养大家的合作交流意识。

1.体会方程与函数之间的联系。

2.能够利用二次函数的图象求一元二次方程的近似根。

1.探索方程与函数之间关系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

预习作业:

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

问题

1. 课本p94 问题.

2. 结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

3. 结合预习题1,完成课本p94 观察中的题目。

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

1.学生能否把实际问题准确地转化为数学问题;

2.学生在思考问题时能否注重数形结合思想的应用;

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3] 例题学习 巩固提高

问题

例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4] 练习反馈 巩固新知

函数 教案篇五

本文题目:高一数学教案:对数函数及其性质

2.2.2 对数函数及其性质(二)

内容与解析

(二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用.

(1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质;

(2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质..

(1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确.

(2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域.

在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。

三、 教学支持条件分析

在本节课一次递推的教学中,准备使用powerpoint 20xx。因为使用powerpoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。

问题一. 对数函数模型思想及应用:

① 出示例题:溶液酸碱度的测量问题:溶液酸碱度ph的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升.

(ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系?

(ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度.

②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想

问题二.反函数:

① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inver function)

② 探究:如何由 求出x?

③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 .

那么我们就说指数函数 与对数函数 互为反函数

④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?

⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么?

⑥ 探究:如果 在函数 的图象上,那么p0关于直线 的对称点在函数 的图象上吗,为什么?

由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称)

⑦练习:求下列函数的反函数: ;

(师生共练 小结步骤:解x ;习惯表示;定义域)

(二)小结:函数模型应用思想;反函数概念;阅读p84材料

1.(20xx全国卷ⅱ文)函数y= (x 0)的反函数是

a. (x 0) b. (x 0) c. (x 0) d. (x 0)

1.b 解析:本题考查反函数概念及求法,由原函数x 0可知a、c错,原函数y 0可知d错,选b.

2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( )

a. b. c. d.

2. b 解析: ,代入 ,解得 ,所以 ,选b.

3. 求函数 的反函数

3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 .

【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助!

函数 教案篇六

1. 理解二次函数的概念;

2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;

3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;

4. 会用待定系数法求二次函数的解析式;

5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,数学教案-二次函数。

内容

(1)二次函数及其图象

如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。

二次函数的图象是抛物线,可用描点法画出二次函数的图象。

(2)抛物线的顶点、对称轴和开口方向

抛物线y=ax2+bx+c(a≠0)的顶点是 (a)第一象限 (b)第二象限 (c)第三象限 (d)第四象限

20.某幢建筑物,从10米高的窗口a用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点m离墙1米,离地面米,则水流下落点b离墙距离ob是( )

(a)2米 (b)3米 (c)4米 (d)5米

三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)

21.已知:直线y=x+k过点a(4,-3)。(1)求k的值;(2)判断点b(-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。

22.已知抛物线经过a(0,3),b(4,6)两点,对称轴为x=,

(1) 求这条抛物线的解析式;

(2) 试证明这条抛物线与x轴的两个交点中,必有一点c,使得对于x轴上任意一点d都有ac+bc≤ad+bd。

23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在o℃时长度为200cm,温度提高1℃,它就伸长0.002cm。

(1) 求这根金属棒长度l与温度t的函数关系式;

(2) 当温度为100℃时,求这根金属棒的长度;

(3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。

24.已知x1,x2,是关于x的方程x2-3x+m=0的两个不同的实数根,设s=x12+x22

(1) 求s关于m的解析式;并求m的取值范围;

(2) 当函数值s=7时,求x13+8x2的值;

25.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,求a的值。

26、如图,在直角梯形abcd中,∠a=∠d=rt∠,截取ae=bf=dg=x,已知ab=6,cd=3,ad=4,求:

(1) 四边形cgef的面积s关于x的函数表达式和x的取值范围;

(2) 当x为何值时,s的数值是x的4倍。

27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元。国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%。

(1) 写出调整后税款y(元)与x的函数关系式,指出x的取值范围;

(2) 要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值.

28、已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为a,与x轴的交点为b,c(b点在c点左边)

(1) 写出a,b,c三点的坐标;

(2) 设m=a2-2a+4试问是否存在实数a,使△abc为rt△?若存在,求出a的值,若不存在,请说明理由;

(3) 设m=a2-2a+4,当∠bac最大时,求实数a的值。

习题2:

一.填空(20分)

1.二次函数=2(x - )2 +1图象的对称轴是 。

2.函数y= 的自变量的取值范围是 。

3.若一次函数y=(m-3)x+m+1的图象过一、二、四象限,则的取值范围是 。

4.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为 。

5.若y与x2成反比例,位于第四象限的一点p(a,b)在这个函数图象上,且a,b是方程x2-x -12=0的两根,则这个函数的关系式 。

6.已知点p(1,a)在反比例函数y= (k≠0)的图象上,其中a=m2+2m+3(m为实数),则这个函数图象在第 象限。

7. x,y满足等式x= ,把y写成x的函数 ,其中自变量x的取值范围是 。

8.二次函数y=ax2+bx+c+(a 0)的图象如图,则点p(2a-3,b+2)

在坐标系中位于第 象限

9.二次函数y=(x-1)2+(x-3)2,当x= 时,达到最小值 。

10.抛物线y=x2-(2m-1)x- 6m与x轴交于(x1,0)和(x2,0)两点,已知x1x2=x1+x2+49,要使抛物线经过原点,应将它向右平移 个单位。

二.选择题(30分)

11.抛物线y=x2+6x+8与y轴交点坐标( )

(a)(0,8) (b)(0,-8) (c)(0,6) (d)(-2,0)(-4,0)

12.抛物线y=- (x+1)2+3的顶点坐标( )

(a)(1,3) (b)(1,-3) (c)(-1,-3) (d)(-1,3)

13.如图,如果函数y=kx+b的图象在第一、二、三象限,那么函数y=kx2+bx-1的图象大致是( )

14.函数y= 的自变量x的取值范围是( )

(a)x 2 (b)x<2 x="">- 2且x 1 (d)x 2且x –1

ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5。1<5。9 ∴loga5。1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0。50。6>0,lnл>0,logл0。5<0;lnл>1,log0。50。6<1,所以logл0。5< log0。50。6< lnл。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

函数图象的位置关系来比大小。

例 2 ⑴求函数y=的定义域。

⑵解不等式log0。2(x2+2x-3)>log0。2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要

使函数有意义。若函数中含有分母,分母不为零;有偶次根式,

被开方式大于或等于零;若函数中有对数的形式,则真数大于

零,如果函数中同时出现以上几种情况,就要全部考虑进去,求

它们共同作用的结果。)

生:分母2x-1≠0且偶次根式的被开方式log0。8x-1≥0,且真数x>0。

解:∵ 2x-1≠0 x≠0。5

log0。8x-1≥0 , x≤0。8

x>0 x>0

∴x(0,0。5)∪(0。5,0。8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解: x2+2x-3>0 x<-3 x="">1

(3x+3)>0 , x>-1

x2+2x-3<(3x+3) -2

不等式的解为:1

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0

⑶已知函数y=loga (a>0, b>0, 且 a≠1)

①求它的定义域;②讨论它的奇偶性;

③讨论它的单调性。

⑷已知函数y=loga(ax-1) (a>0,a≠1),

①求它的定义域;

②当x为何值时,函数值大于1;

③讨论它的单调性。

函数 教案篇七

角的概念的推广

要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

一、提出课题:“三角函数”

回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。

二、角的概念的推广

1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”

2.讲解:“旋转”形成角(p4)

突出“旋转” 注意:“顶点”“始边”“终边”

“始边”往往合于轴正半轴

3.“正角”与“负角”——这是由旋转的方向所决定的。

记法:角 或 可以简记成

4.由于用“旋转”定义角之后,角的范围大大地扩大了。

1° 角有正负之分

2° 角可以任意大

实例:体操动作:旋转2周(360°×2=720°) 3周(360°×3=1080°)

3° 还有零角 一条射线,没有旋转

三、关于“象限角”

为了研究方便,我们往往在平面直角坐标系中来讨论角

角的顶点合于坐标原点,角的始边合于 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)

例如:30° 390° -330°是第ⅰ象限角 300° -60°是第ⅳ象限角

585° 1180°是第ⅲ象限角 -20xx°是第ⅱ象限角等

四、关于终边相同的角

1.观察:390°,-330°角,它们的终边都与30°角的终边相同

2.终边相同的角都可以表示成一个0°到360°的角与 个周角的和

390°=30°+360°

-330°=30°-360° 30°=30°+0×360°

1470°=30°+4×360°

-1770°=30°-5×360°

3.所有与a终边相同的角连同a在内可以构成一个集合

即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和

4.例一 (p5 略)

五、小结: 1° 角的概念的推广

用“旋转”定义角 角的范围的扩大

2°“象限角”与“终边相同的角”

六、作业: p7 练习1、2、3、4

习题1.4 1

函数 教案篇八

知识与技能

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

1、掌握函数概念。

2、判断两个变量之间的关系是否可看作函数。

3、能把实际问题抽象概括为函数问题。

1、理解函数的概念。

2、能把实际问题抽象概括为函数问题。

一、创设问题情境,导入新课

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

函数 教案篇九

1.掌握用待定系数法求三角函数解析式的方法;

2.培养学生用已有的知识解决实际问题的能力;

3.能用计算机处理有关的近似计算问题.

重点是待定系数法求三角函数解析式;

难点是选择合理数学模型解决实际问题.

【创设情境】

三角函数能够模拟许多周期现象,因此在解决实际问题中有着广泛的应用.

【自主学习探索研究】

1.学生自学完成p42例1

点o为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.

(1)求物体对平衡位置的位移x(cm)和时间t(s)之间的函数关系;

(2)求该物体在t=5s时的位置.

(教师进行适当的评析.并回答下列问题:据物理常识,应选择怎样的函数式模拟物体的运动;怎样求和初相位θ;第二问中的“t=5s时的位置”与函数式有何关系?)

2.讲解p43例2(题目加已改变)

2.讲析p44例3

海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮是返回海洋.下面给出了某港口在某季节每天几个时刻的水深.

(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,并给出在整点时的近似数值.

(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?

(3)若船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

问题:

(1)选择怎样的数学模型反映该实际问题?

(2)图表中的最大值与三角函数的哪个量有关?

(3)函数的周期为多少?

(4)“吃水深度”对应函数中的哪个字母?

3.学生完成课本p45的练习1,3并评析.

【提炼总结】

从以上问题可以发现三角函数知识在解决实际问题中有着十分广泛的应用,而待定系数法是三角函数中确定函数解析式最重要的方法.三角函数知识作为数学工具之一,在以后的学习中将经常有所涉及.学数学是为了用数学,通过学习我们逐步提高自己分析问题解决问题的能力.

p46习题1.3第14、15题

函数 教案篇十

本 节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想, 以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一 次函数性质作准备。

(一)教学目标的确定

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

1、知识目标

(1)能用“两点法”画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。

2、能力目标

(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

3、情感目标

(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

(二)教学重点、难点

用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

一、设疑,导入新课(2分钟)

师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?

生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。

生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。

生3:正比例函数也是一次函数。

师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?

这节课让我们一起来研究 “一次函数的图象”。(板书)

1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)

生:不知道。

师:那就让我们一起做一做,看一看:(出示幻灯片)

用描点法作出下列一次函数的图象。

(1)y= 0.5x (2) y= 0.5x+2

(3)y= 3x (4) y= 3x + 2

师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?

然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?

小组汇报:一次函数的图象是直线。

师:所有的一次函数图象都是直线吗?

生:是。

师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。(板书)

师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)

讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

小组1:正比例函数图象经过原点。

小组2:正比例函数图象经过原点,一般的一次函数不经过原点。

师出示幻灯片3(使学生再一次加深印象)

师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法?

(一边思考,可以和同桌交流)(2分钟)

生1:用3个点。

生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!

生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。

师:我们都认为画一次函数图象,只过两个点画直线就行。

(幻灯片4:师,动画演示用“两点法”画一次函数的过程)

师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)

师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?

组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,

1)点。这样找的坐标都是整数。

组2:我们组认为尽量都找整数。

组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)

组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。

师:同学们说的都很好。我觉得可以根据情况来取点。

2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?

问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟)

①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。

生1:①y=0.5x与y=0.5x+2;两直线平行。

生2:②y=3x与y=3x+2;两直线平行。

生3:③y=0.5x与y=3x;两直线相交。

生4:④y=0.5x+2与y=3x+2;两直线相交。

师:其他同学有没有补充?

生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。

生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。

师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。

函数 教案篇十一

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

函数 教案篇十二

1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值.

2.掌握已知角 终边上一点坐标,求四个三角函数值.(即给角求值问题)

任意角的三角函数的定义.

任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示.

直尺、圆规、投影仪.

1.设置情境

角的范围已经推广,那么对任一角 是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题.

2.探索研究

(1)复习回忆锐角三角函数

我们已经学习过锐角三角函数,知道它们都是以锐角 为自变量,以比值为函数值,定义了角 的正弦、余弦、正切、余切的三角函数,本节课我们研究当角 是一个任意角时,其三角函数的定义及其几何表示.

(2)任意角的三角函数定义

如图1,设 是任意角, 的终边上任意一点 的坐标是 ,当角 在第一、二、三、四象限时的情形,它与原点的距离为 ,则 .

定义:①比值 叫做 的正弦,记作 ,即 .

②比值 叫做 的余弦,记作 ,即 .

图1

③比值 叫做 的正切,记作 ,即 .

同时提供显示任意角的三角函数所在象限的课件

提问:对于确定的角 ,这三个比值的大小和 点在角 的终边上的位置是否有关呢?

利用三角形相似的知识,可以得出对于角 ,这三个比值的大小与 点在角 的终边上的位置无关,只与角 的大小有关.

请同学们观察当 时, 的终边在 轴上,此时终边上任一点 的横坐标 都等于0,所以 无意义,除此之外,对于确定的角 ,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义.

④比值 叫做 的余切,记作 ,则 .

⑤比值 叫做 的正割,记作 ,则 .

⑥比值 叫做 的余割,记作 ,则 .

可以看出:当 时, 的终边在 轴上,这时 的纵坐标 都等于0,所以 与 的值不存在,当 时, 的值不存在,除此之外,对于确定的角 ,比值 , , 分别是一个确定的实数,所以我们把正弦、余弦,正切、余切,正割及余割都看成是以角为自变量,以比值为函数值的函数,以上六种函数统称三角函数.

(3)三角函数是以实数为自变量的函数

对于确定的角 ,如图2所示, , , 分别对应的比值各是一个确定的实数,因此,正弦,余弦,正切分别可看成从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,当采用弧度制来度量角时,每一个确定的角有惟一确定的弧度数,这是一个实数,所以这几种三角函数也都可以看成是以实数为自变量,以比值为函数值的函数.

即:实数角(其弧度数等于这个实数)三角函数值(实数)

(4)三角函数的一种几何表示

利用单位圆有关的有向线段,作出正弦线,余弦线,正切线,如下图3.

图3

设任意角 的顶点在原点 ,始边与 轴的非负半轴重合,终边与单位圆相交于点 ,过 作 轴的垂线,垂足为 ;过点 作单位圆的切线,这条切线必然平行于轴,设它与角 的终边(当 为第一、四象限时)或其反向延长线(当 为第二、三象限时)相交于 ,当角 的终边不在坐标轴上时,我们把 , 都看成带有方向的线段,这种带方向的线段叫有向线段.由正弦、余弦、正切函数的定义有:

这几条与单位圆有关的有向线段 叫做角 的正弦线、余弦线、正切线.当角 的终边在 轴上时,正弦线、正切线分别变成一个点;当角 的终边在 轴上时,余弦线变成一个点,正切线不存在.

(5)例题讲评

函数 教案篇十三

对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(一).创设情境

(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

(提问):什么是指数函数?指数函数存在反函数吗?

(学生): 是指数函数,它是存在反函数的.

(师):求反函数的步骤

(由一个学生口答求反函数的过程):

由 得 .又 的值域为 ,

所求反函数为 .

(师):那么我们今天就是研究指数函数的反函数-----对数函数.

(二)新课

1.(板书) 定义:函数 的反函数 叫做对数函数.

(师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

(学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

(在此基础上,我们将一起来研究对数函数的图像与性质.)

2.研究对数函数的图像与性质

(提问)用什么方法来画函数图像?

(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

(学生2)用列表描点法也是可以的。

请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

(师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

(2) 画出直线 .

(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:

然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

3. 性质

(1) 定义域:

(2) 值域:

由以上两条可说明图像位于 轴的右侧.

(3)图像恒过(1,0)

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

当 时,在 上是减函数,即图像是下降的.

之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

当 时,有 ;当 时,有 .

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用.

(三).简单应用

1. 研究相关函数的性质

例1. 求下列函数的定义域:

(1) (2) (3)

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

2. 利用单调性比较大小

例2. 比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与 ; (4) 与 .

让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

三.拓展练习

练习:若 ,求 的取值范围.

四.小结及作业

本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

函数 教案篇十四

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的.理解和有效的学习模式。

掌握函数概念。

判断两个变量之间的关系是否可看作函数。

能把实际问题抽象概括为函数问题。

理解函数的概念。

能把实际问题抽象概括为函数问题。

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

『生』:摩天轮。

『师』:你们坐过吗?

……

『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?

『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。

『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。

大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:

t/分 0 1 2 3 4 5 …… h/米

t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

『师』:对于给定的时间t,相应的高度h确定吗?

『生』:确定。

『师』:在这个问题中,我们研究的对象有几个?分别是什么?

『生』:研究的对象有两个,是时间t和高度h。

『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。

做一做

(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?

填写下表:

层数n 1 2 3 4 5 … 物体总数y 1 3 6 10 15 … 『师』:在这个问题中的变量有几个?分别师什么?

『生』:变量有两个,是层数与圆圈总数。

(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行s米,一般地有经验公式,其中v表示刹车前汽车的速度(单位:千米/时)

①计算当fenbie为50,60,100时,相应的滑行距离s是多少?

②给定一个v值,你能求出相应的s值吗?

解:略

议一议

『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?

『生』:相同点是:这三个问题中都研究了两个变量。

不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。

『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。

函数的概念

在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。

一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

书p152页 随堂练习1、2、3

初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。

在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

函数的三种表达式:

图象;(2)表格;(3)关系式。

为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?

(答案:y=1.8x-6或)

习题6.1

本文发布于:2023-05-19 04:58:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/690369.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:教案   函数   最新
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图