第十届全国青少年信息学奥林匹克联赛复赛试题及答案
一、不高兴的津津
(unhappy.pas/dpr/c/cpp)
岛津齐彬【问题描述】
津津上初中了。妈妈认为津津应该更加用功学习,所以津津除了上学之外,还要参加妈妈为她报名的各科复习班。另外每周妈妈还会送她去学习朗诵、舞蹈和钢琴。但是津津如果一天上课超过八个小时就会不高兴,而且上得越久就会越不高兴。假设津津不会因为其它事不高兴,并且她的不高兴不会持续到第二天。请你帮忙检查一下津津下周的日程安排,看看下周她会不会不高兴;如果会的话,哪天最不高兴。
【输入文件】
寿司怎么做输入文件unhappy.in包括七行数据,分别表示周一到周日的日程安排。每行包括两个小于10的非负整数,用空格隔开,分别表示津津在学校上课的时间和妈妈安排她上课的时间。
【输出文件】
输出文件unhappy.out包括一行,这一行只包含一个数字。如果不会不高兴则输出0,如果会则输出最不高兴的是周几(用1, 2, 3, 4, 5, 6, 7分别表示周一,周二,周三,周四,周五,周六,周日)。如果有两天或两天以上不高兴的程度相当,则输出时间最靠前的一天。
【样例输入】
心花怒放的意思5 3
6 2
7 2
5 3
5 4
0 4
0 6
【样例输出】
3
二、花生采摘
(peanuts.pas/dpr/c/cpp)
【问题描述】
鲁宾逊先生有一只宠物猴,名叫多多。这天,他们两个正沿着乡间小路散步,突然发现路边的告示牌上贴着一张小小的纸条:“欢迎免费品尝我种的花生!——熊字”。
鲁宾逊先生和多多都很开心,因为花生正是他们的最爱。在告示牌背后,路边真的有一块花生田,花生植株整齐地排列成矩形网格(如图1)。有经验的多多一眼就能看出,每棵花生植株下的花生有多少。为了训练多多的算术,鲁宾逊先生说:“你先找出花生最多的植株,去采摘它的花生;然后再找出剩下的植株里花生最多的,去采摘它的花生;依此类推,
不过你一定要在我限定的时间内回到路边。”
我们假定多多在每个单位时间内,可以做下列四件事情中的一件:
1) 从路边跳到最靠近路边(即第一行)的某棵花生植株;
2) 从一棵植株跳到前后左右与之相邻的另一棵植株;
3) 采摘一棵植株下的花生;
4) 从最靠近路边(即第一行)的某棵花生植株跳回路边。
现在给定一块花生田的大小和花生的分布,请问在限定时间内,多多最多可以采到多少个花生?注意可能只有部分植株下面长有花生,假设这些植株下的花生个数各不相同。
例如在图2所示的花生田里,只有位于(2, 5), (3, 7), (4, 2), (5, 4)的植株下长有花生,个数分别为13, 7, 15, 9。沿着图示的路线,多多在21个单位时间内,最多可以采到37个花生。
【输入文件】
输入文件peanuts.in的第一行包括三个整数,M, N和K,用空格隔开;表示花生田的大小为M * N(1 <= M, N <= 20),多多采花生的限定时间为K(0 <= K <= 1000)个单位时间。接下来的M行,每行包括N个非负整数,也用空格隔开;第i + 1行的第j个整数Pij(0 <= Pij <= 500)表示花生田里植株(i, j)下花生的数目,0表示该植株下没有花生。
【输出文件】
输出文件peanuts.out包括一行,这一行只包含一个整数,即在限定时间内,多多最多可以采到花生的个数。
【样例输入1】
6 7 21
0 0 0 0 0 0 0
0 0 0 0 13 0 0
0 0 0 0 0 0 7
0 15 0 0 0 0 0
0 0 0 9 0 0 0
0 0 0 0 0 0 0
【样例输出1】
37
【样例输入2】
6 7 20
0 0 0 0 0 0 0
0 0 0 0 13 0 0
0 0 0 0 0 0 7
0 15 0 0 0 0 0
0 0 0 9 0 0 0
0 0 0 0 0 0 0
【样例输出2】
28
三、FBI树
十四英语怎么读(fbi.pas/dpr/c/cpp)
【问题描述】
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。
FBI树是一种二叉树[1],它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
1) T的根结点为R,其类型与串S的类型相同;
2) 若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
现在给定一个长度为2N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历[2]序列。
【输入文件】
输入文件fbi.in的第一行是一个整数N(0 <= N <= 10),第二行是一个长度为2N的“01”串。
【输出文件】
输出文件fbi.out包括一行,这一行只包含一个字符串,即FBI树的后序遍历序列。
【样例输入】
3
10001011
【样例输出】
IBFBBBFIBFIIIFF
【数据规模】
对于40%的数据,N <= 2;
对于全部的数据,N <= 10。
宝贝故事四、火星人
(martian.pas/dpr/c/cpp)
【问题描述】
人类终于登上了火星的土地并且见到了神秘的火星人。人类和火星人都无法理解对方的语言,但是我们的科学家发明了一种用数字交流的方法。这种交流方法是这样的,首先,火
星人把一个非常大的数字告诉人类科学家,科学家破解这个数字的含义后,再把一个很小的数字加到这个大数上面,把结果告诉火星人,作为人类的回答。
火星人用一种非常简单的方式来表示数字——掰手指。火星人只有一只手,但这只手上有成千上万的手指,这些手指排成一列,分别编号为1,2,3……。火星人的任意两根手指都能随意交换位置,他们就是通过这方法计数的。
一个火星人用一个人类的手演示了如何用手指计数。如果把五根手指——拇指、食指、中指、无名指和小指分别编号为1,2,3,4和5,当它们按正常顺序排列时,形成了5位数12345,当你交换无名指和小指的位置时,会形成5位数12354,当你把五个手指的顺序完全颠倒时,会形成54321,在所有能够形成的120个5位数中,12345最小,它表示1;12354第二小,它表示2;54321最大,它表示120。下表展示了只有3根手指时能够形成的6个3位数和它们代表的数字:
三进制数
123
132
213
231
312
321
代表的数字
1
2
时光流
3
4
5
6
现在你有幸成为了第一个和火星人交流的地球人。一个火星人会让你看他的手指,科学家会告诉你要加上去的很小的数。你的任务是,把火星人用手指表示的数与科学家告诉你的数相加,并根据相加的结果改变火星人手指的排列顺序。输入数据保证这个结果不会超出火星人手指能表示的范围。
【输入文件】
输入文件martian.in包括三行,第一行有一个正整数N,表示火星人手指的数目(1 <= N <= 10000)。第二行是一个正整数M,表示要加上去的小整数(1 <= M <= 100)。下一行是1到N这N个整数的一个排列,用空格隔开,表示火星人手指的排列顺序。
【输出文件】
输出文件martian.out只有一行,这一行含有N个整数,表示改变后的火星人手指的排列顺序。每两个相邻的数中间用一个空格分开,不能有多余的空格。
【样例输入】
5
3
1 2 3 4 5
【样例输出】
1 2 4 5 3
【数据规模】
对于30%的数据,N<=15;
对于60%的数据,N<=50;
对于全部的数据,N<=10000;
[1] 二叉树:二叉树是结点的有限集合,这个集合或为空集,或由一个根结点和两棵不相交的二叉树组成。这两棵不相交的二叉树分别称为这个根结点的左子树和右子树。
[2] 后序遍历:后序遍历是深度优先遍历二叉树的一种方法,它的递归定义是:先后序遍历左子树,再后序遍历右子树,最后访问根。
NOIP普及组复赛参考程序
NOIP2004普及组解题参考
第一题:不高兴的津津
方法:枚举
程序:
program unhappy; {writen by lxq 2004.11.20}
var a,i,x,y,d,max : byte;
begin
assign(input,'unhappy.in'); ret(input);
assign(output,'unhappy.out'); rewrite(output);
d := 0; max :=8;
for i := 1 to 7 do begin 幸福的生活
readln(x,y);
a := x+y;
if a>max then
begin
max :=a; d := i;
end;
end;
writeln(d);
clo(input); clo(output);
end.
第二题:花生采摘
方法:排个序,然后迭代递推
程序:
program peanuts; {writen by lxq 2004.11.20}
type mytype=record
x,y,d:integer;
end;
var time,all,num,i,j,m,n,k,u,v,z:integer;
q:array[1..400] of mytype;
t:mytype;
begin
all:=0;
assign(input,'peanuts.in');
ret(input);
readln(m,n,k);
for i:=1 to m do
begin
for j:=1 to n do
begin
read(u);
if u>0 then
begin
inc(all);
q[all].x:=i;q[all].y:=j;q[all].d:=u;
if all>1 then
begin
学生请假条图片v:=1;
while q[v].d>u do inc(v);
t:=q[all];
for z:=all downto v+1 do q[z]:=q[z-1];
q[v]:=t;
end;
end;
end;
readln;
end;
clo(input);
num:=0;time:=0;u:=0;v:=q[1].y;
for i:=1 to all do
begin
if time+abs(q[ i ].x-u)+abs(q[ i ].y-v)+1+q[ i ].x<=k