第二章生长与代谢的生物化学
前言
一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。
代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。
实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合
1964年多大了
罗隐简介
物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而维持一定水平的合成代谢。
人生必读书籍排行榜
在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO2。
代谢与能量
分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP,其含有生物学家所说的“高能键”。在ATP分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP这类分子,为细胞提供了流通能量,当将ATP用于生物合成反应时,其水解产物为ADP(腺苷二磷酸)或者某些时候为AMP(腺苷一磷酸):(反应式)
仍含有一个高能键的ADP通过腺苷酸激酶反应也可生成
ATP :(反应式)。
磷酸化作用是生物体中普遍的反应,通常由ATP 作用而发生。
经过磷酸化生成的物质通常比最初的化合物更具有反应活性,用无机磷酸进行磷酸化反应是无法进行的,因为,平衡反应式的相反方向生成大量的水(55M )。
细胞的“能量状态”认为是由占有优势的组分:ATP 、ADP 、AMP 作用形成的。为了给出一个量值,Daniel Atksirson 提出了“能荷”这个概念,定义一个细胞的能荷为:
在“满荷”细胞中,仅含有ATP 一种腺嘌呤核苷酸,它的能荷值定义为。如果三种核苷酸的量相等,即ATP=ADP=AMP ,则细胞的能荷为。收获作文600字
与所有的习惯用法相同,能荷概念的使用是有限制的,没有人能够确定假如一个细胞的能荷是而不是或者到底是什么意思。 这个概念没有考虑细胞中核苷酸的确切数量,也没有表明对于单体酶和ATP 与其镁复合物之间的显着差别。它也无法解释细菌、酵母菌与霉菌中能荷值的差异。尽管如此,这个概念对于给定的细胞类型如生长期细胞中随后的能量与酶活性的改变来讲是有所帮助的。当细胞迅速生长时,能荷处于最低值;ATP 以它重新合成的最快速度被消耗,在生长ATP+ ADP
ATP+ ADP+AMP
末期,生长速度开始变慢,相对于ADP和AMP,ATP组分开始增大,因此,能荷值开始增大,当细胞
华为手机数据恢复
停止生长时,所有的ADP和AMP都已经转化为ATP,此时能荷值达到最大。
分解代谢途径
尽管微生物可以利用不同的含碳化合物进行生长,但我们主要关心的是葡萄糖的代谢,鉴于乙醇(和其它C2化合物)、烃和脂肪酸、甲烷和甲醇这些物质的不断增长的重要的经济价值。
公益宣传
2.3.1 葡萄糖和其它糖
几乎在所有的生命细胞中,最重要的两种糖代谢途径是二磷酸己糖途径与一磷酸己糖途径,它们常常同时发生,为合成代谢过程提供重要的联系,它们之间的相互作用受关键控制机制的支配。
二磷酸己糖途径(常被称为恩伯纳-迈耶霍夫或者糖酵解途径)如图所示。这个过程将葡萄糖转化为丙酮酸,碳原子数量无变化,还原2分子NAD+辅酶生成2分子ATP。生成的丙酮酸是合成代谢重要的前提物质的来源,在好氧有机体中,它还是氧化还原反应的底物,而在厌氧有机体中,丙酮酸或者它转化的产物是NADH的氧化剂。
一磷酸己糖途径即磷酸戊糖途径如图。作为氧化过程,它将葡萄糖转化为戊糖和CO2,还原2分子NADP+生成NADPH。[NAD+ NADP+和NADH/NADPH都是通过H转移而作用,但它们
是有差别的;NADH主要在于能量相关的氧化还原反应中发挥作用,而NADPH主要作用于合成代谢过程中的还原反应步骤。
经过一系列可逆互变过程,如图所示,磷酸戊糖与其它含有3-7个碳原子的磷酸糖相平衡,并根据环境条件,扮演不同的代谢角色。磷酸丙糖与糖酵解过程中所生成的相同,而且跳过糖酵解途径的cleavage step生成二磷酸己糖;磷酸丁糖是重要的合成代谢生产芳香环氨基酸的前体,而磷酸戊糖也是合成核苷酸所必需的物质。82年属啥
保济丸的功效与作用对大多数有机体而言,66-80%的葡萄糖是经过恩伯纳-迈耶霍夫途径进行代谢的,剩下的则通过磷酸戊糖途径进行代谢。每个代谢途径中碳原子流向的控制点通常是恩伯纳-迈耶霍夫途径中,当6-磷酸果糖被磷酸果糖激酶(PFK)催化发生磷酸化作用生成1,6-二磷酸果糖时候。这种酶分子组成可以根据细胞所进行的主要代谢情况而对酶活性进行调节:当需要更多能量的时候,PFK的活性就增大;而如果细胞中有足够的能量或者足够的C3代谢产物,则PFK的活性就降低。
这种通过调节催化活性从而对酶进行控制的原则是很普遍。代谢途径是一直被控制的,对细胞来说,必须协调并最有效的行使它的整体活动。对于PFK的控制通过两种手段。第一,酶的激活。在存在有ATP或ADP时,酶催化反应的速度被增大。因此,当细胞能荷低时,PFK将以高速率催化反