在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
九年级下册数学知识点归纳江苏篇一
若函数为一元二次函数,则可以用这种方法求值域,关键在于正确化成完全平方式。
(2)换元法:
常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。
(3)判别式法:
若函数为分式结构,且分母中含有未知数x,则常用此法。通常去掉分母转化为一元二次方程,再由判别式△0,确定y的范围,即原函数的值域
(4)不等式法:
借助于重要不等式a+bab(a0)求函数的值域。用不等式法求值域时,要注意均值不等式的使用条件一正,二定,三相等。
(5)反函数法:
若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a0)型函数的值域,可采用反函数法,也可用分离常数法。
(6)单调性法:
首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p0)的单调性:增区间为(-,-p)的左开右闭区间和(p,+)的左闭右开区间,减区间为(-p,0)和(0,p)
(7)数形结合法:
分析函数解析式表达的集合意义,根据其图像特点确定值域。
练习题:
1.函数y=x+1x的定义域为________.
解析:利用解不等式组的方法求解.
要使函数有意义,需x+1≥0,x≠0,解得x≥-1,x≠0.
∴原函数的定义域为{x|x≥-1且x≠0}.
答案:{x|x≥-1且x≠0}
2.函数f(x)=11-2x的定义域是________
解析:由1-2x>0x<12.
答案:xx<12
3.已知f(x)=3x+2,x<1,x2+ax,x≥1.若f(f(0))=4a,则实数a=________.
解析:∵f(0)=2,f(f(0))=f(2)=4+2a.
∴4+2a=4a;a=2.
答案:2
九年级下册数学知识点归纳江苏篇二
易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数.
易错点2:在从统计图获取信息时,一定要先判断统计图的准确性.不规则的统计图往往使人产生错觉,得到不准确的信息.
易错点3:对全面调查与抽样调查的概念及它们的适用范围不清楚,造成错误.
易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差.
易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率.
好题1.在一次数学竞赛中,10名学生的成绩如下:75 80 80 70 85 95 70 65 70 80.则这次竞赛成绩的众数是多少?
解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的意义可知,一组数据中出现次数最多的数据是这组数据的众数.而在数据中70也出现了三次,所以这组数据是众数有两个.
答案:这组数据的众数是70和80.
好题2.某班53名学生右眼视力(裸视)的检查结果如下表所示:
则该班学生右眼视力的中位数是_______.
解析:本题表面上看视力数据已经排序,可以求视力的中位数,有的同学会误认为:因为11个数据按照大小的顺序排列有:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、1.0、1.2、1.5,则知排在第6个的数是0.6.但注意观察可以发现:题目中的视力数据实际是小组数据,小组的人数才是视力数据的真正个数.因此,不能直接求视力数据的中位数,而应先求出53名学生视力数据的中间数据,即第27名学生的视力就是本班学生右眼视力的中位数.
答案:(53+1)÷2=27,所以第27名学生的右眼视力为中位数,从表中人数栏数出第27名学生所对应的右眼视力为0.8,即该班学生右眼视力的中位数是0.8.
九年级下册数学知识点归纳江苏篇三
二次函数概述
二次函数(quadraticfunction)是指未知数的次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般地,自变量x和因变量y之间存在如下关系:
一般式:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k(两个式子实质一样,但初中课本上都是第一个式子)
交点式(与x轴):y=a(x-x1)(x-x2)
重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大。)
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的二次函数
x1,x2=[-b±根号下(b^2-4ac)]/2a(即一元二次方程求根公式
求根的方法还有十字相乘法和配方法
开口方向:a>0向上,a<0向下
顶点坐标:(0,0)
对称轴:y轴
函数变化:
(1)当a>0
x>0时,y随x增大而增大;
x<0时,y随x增大而减小.
(2)当a<0
x>0时,y随x增大而减小;
x<0时,y随x增大而增大.
(小)值:
(1)当a>0,当x=0时,y最小=0.
(2)当a<0,当x=0时,y=0.一般地,自变量x和因变量y之间存在如下关系:
(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).
(3)交点式(与x轴):y=a(x-x1)(x-x2)
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:
(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的'顶点在原点.
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).
1、概念:三条边对应成比例,三个角对应相等的两个三角形叫相似三角形。
2、相似比:在相似三角形中,对应边的比叫作这两个三角形的相似比。
3、全等三角形:形状和大小都相同的三角形称为全等三角形。全等三角形是相似三角形的特例。
例:
1、两个全等三角形一定相似吗?为什么?
相似.因为对应角相等,对应边成比例
2、两个直角三角形一定相似吗?为什么?
两个直角三角形不一定相似。因为对应角不一定相等,对应边也不一定成比例.
3、两个等腰直角三角形呢?
两个等腰直角三角形相似.因为对应角相等,对应边成比例.
4、两个等腰三角形一定相似吗?为什么?
两个等腰三角形不一定相似.
5、两个等边三角形呢?
相似三角形的判定
1.两个三角形的两个角对应相等
2.两边对应成比例,且夹角相等
3.三边对应成比例
4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
相似三角形的判定方法
根据相似图形的特征来判断。(对应边成比例,对应边的夹角相等)
1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;
(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;
3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;
4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
5.对应角相等,对应边成比例的两个三角形叫做相似三角形(用定义证明)
绝对相似三角形
1.两个全等的三角形一定相似。
2.两个等腰直角三角形一定相似。(两个等腰三角形,如果顶角或底角相等,那么这两个等腰三角形相似。)
3.两个等边三角形一定相似。
直角三角形相似判定定理
1.斜边与一条直角边对应成比例的两直角三角形相似。
2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
射影定理
三角形相似的判定定理推论
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方
注意:全等是特殊的相似,即相似比为1:1的情况
锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(c),(余割csc)都叫做角a的锐角三角函数。
正弦等于对边比斜边
余弦等于邻边比斜边
正切等于对边比邻边
余切等于邻边比对边
正割等于斜边比邻边
余割等于斜边比对边
正切与余切互为倒数
它的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
它有六种基本函数(初等基本表示):
函数名正弦余弦正切余切正割余割
在平面直角坐标系xoy中,从点o引出一条射线op,设旋转角为θ,设op=r,p点的坐标为(x,y)有
正弦函数sinθ=y/r
余弦函数cosθ=x/r
正切函数tanθ=y/x
余切函数cotθ=x/y
正割函数cθ=r/x
余割函数cscθ=r/y
(斜边为r,对边为y,邻边为x。)
以及两个不常用,已趋于被淘汰的函数:
正矢函数versinθ=1-cosθ
余矢函数coversθ=1-sinθ
本文发布于:2023-05-14 08:05:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/82/624739.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |