Dynamic_Heterogeneous_Panels_notes

更新时间:2023-05-12 02:12:42 阅读: 评论:0

(Dynamic) Heterogeneous Panels
• Pooled Mean Group
• Mean Group
• Swamy Random coefficients
The xtpmg command
. x t p m g  d .c  d .y  d .p i , l r (l .c  y  p i ) m g  c o n s t (1) r e p l a c e  e c (e c )    . c o n s  d e f  1 [e c ]y =.75    . x t p m g  d .c  d .y  d .p i , l r (l .c  y  p i ) d f e
. x t p m g  d .c  d (1/2).y  d .p i  i f  y e a r >1962, e c (e c ) l r (l .c  y  p i ) m g  r e p l a c e
. x t p m g  d .c  d .y  d .p i , l r (l .c  y  p i ) f u l l
E x a m p l e s
be equal across panels.
d f
e  specifies the dynamic fixed-effects estimator.  All parameters, except intercepts, are constrained to        regressions.        m g  specifies the mean-group estimator.  This model fits parameters as averages o
f the N  individual group        coefficients.
coefficient vector to be equal across panels while allowing for group-specific short-run and adjustment        p m g  is the default and specifies the pooled mean-group estimator.  This model constrains the long-run    model  is the type of estimator to be fitted and is one of the following:
listed by default.
f u l l  specifies that all N  cross-ction regression results be listed.  Only the averaged coefficients are    d i f f i c u l t  will u a different steppin
g algorithm in nonconcave regions of the likelihood.
be ud only with option p m g .  See model_options  in [R ] m l  for more information.
...], where algorithm  is {n r |b b f g s |d d f p }. The b h h h  algorithm is not compatible with x t m p g .
  t e c h n i q u e () can    t e c h n i q u e (algorithm_spec ) specifies m l  optimization technique.  algorithm_spec  is algorithm  [# [algorithm  [#]]    l e v e l (#) ts the confidence level; default is l e v e l (95).
O b t a i n i n g  r o b u s t  v a r i a n c e  e s t i m a t e s .
variance  covariance matrix of the estimators (VCE), but not the estimated coefficients; e [U ] 20.14        with repeated obrvations on individuals.  c l u s t e r () affects the estimated standard errors and        within groups.  varname  specifies to which group each obrvation belongs, e.g., c l u s t e r (p e r s o n i d ) in data    c l u s t e r (varname ) specifies that the obrvations are independent across groups (clusters), but not necessarily    n o c o n s t a n t  suppress the constant term.  This option cannot be ud with option d f e .        with option p m g .
c o n s t r a i n t s (string ) specifies the constraints to be applie
d to th
e model.  This option is currently ud only    r e p l a c e  overwrites the error-correction variable, i
f it exists.
e c (string ) is ud to specify the name o
f the newly created error-correction term; default is
__e c .
identification, the first listed variable will have its coefficient normalized to 1.
l r (varlist ) specifies the variables to be included when calculating the long-run cointegrating vector.  For O p t i o n s
e_(it) is the error term. The assumed distribution of the error term depends on the model fitted.
b_1,...,b_q are q parameters to be estimated, and
x_(it) is a (1 x k) vector of covariates
a_1,...,a_p are p parameters to be estimated
beta is a (k x 1) vector of parameters
phi is the error correction speed of adjustment parameter to be estimated
where                  i={(1,...,N};    t={(1,...,T_i)},
d.y_it =  phi*(y_(it-1)+beta*x_(it)) + d.y_(it-1)a_1+... + y_(it-p)a_p + d.x_(it)b_1+...+d.x_(it-q)b_q + e_(it)    mean-group estimators. Consider the model
In addition to the traditional dynamic fixed-effects models, x t p m g  allows for the pooled mean-group and    x t p m g  aids in the estimation of large-N  and large-T  panel-data models, where nonstationarity may be a concern.D e s c r i p t i o n
varlists  may contain time-ries operators; e tsvarlist .
You must t s s e t  your data before using x t p m g ; e t s s e t .                l e v e l (#) t t e c h n i q u e (algorithm_spec ) d d i f f i c u l t  f f u l l  model ]
x t p m g  depvar  [indepvars ] [if ] [in ] [, l l r (varlist ) e e c (string ) r r e p l a c e  c c o n s t r a i n t s (string ) n n o c o n s t a n t S y n t a x    x t p m g    Pooled mean-group, mean-group, and dynamic fixed-effects models
The xtrc command
[X T ] x t m i x e d , [X T ] x t r e g    Online:  [X T ] x t r c  p o s t e s t i m a t i o n ;    Manual:  [X T ] x t r c
A l s o  s e e
Swamy, P. 1970.  Efficient inference in a random coefficient regression model.
Econometrica  38: 311-323.R e f e r e n c e
e (s a m p l e )      marks estimation sample
Functions                        group i  predictor
e (V _p s )        matrix o
f variances for the best linear predictors; row i  contains vec of variance matrix for      e (V )          variance-covariance matrix of the estimators      e (b e t a _p s )    matrix of best linear predictors      e (S i
g m a )      Sigma hat matrix      e (b )          coefficient vector    Matrices        e (p r e d i c t )    program ud to implement p r e d i c t
e (p r o p e r t i e s )  b  V      e (v c e t y p e )    title ud to label Std. Err.      e (v c e )        vcetype  specified in v c e ()      e (c h i 2t y p e )    W a l d ; type o
f model chi-squared test      e (o f f s e t )      offt      e (i v a r )        variable denotin
g groups      e (t i t l e )      title in estimation output      e (d e p v a r )      name of dependent variable      e (c m d l i n e )    command as typed      e (c m d )        x t r c    Macros          e (d f _c
h
i 2c )    degrees of freedom for comparison chi-squared test
e (c h i 2_c )      chi-squared for comparison test      e (c h i 2)        chi-squared      e (g _a v g )      average group size      e (g _m i n )      smallest group size      e (g _m a x )      largest group size      e (d
f _m )        model degrees of freedom      e (N _
g )        number of groups      e (N )          number of obrvations    Scalars      x t r c  saves the following in e ():
S a v e d  r e s u l t s
. x t r c  i n v e s t  m a r k e t  s t o c k
. w e b u s e  i n v e s t 2E x a m p l e
l e v e l (#); e [X T ] e s t i m a t i o n  o p t i o n s .          Reporting                                                                                                                            squares regression.
v c e (c o n v e n t i o n a l ), the default, us the conventionally derived variance estimator for generalized least        asymptotic theory and that u bootstrap or jackknife methods; e [X T ] vce_options .
v c e (vcetype ) specifies the type of standard error reported, which includes types that are derived from          SE                                                                                                                        b e t a s  requests that the group-specific best linear predictors also be displayed.
n o c o n s t a n t , o f f s e t (varname ); e [X T ] e s t i m a t i o n  o p t i o n s .          Main                                                                                                                    O p t i o n s
x t r c  fits the Swamy (1970) random-coefficients linear regression model.
D e s c r i p t i o n
See [X T ] x t r c  p o s t e s t i m a t i o n  for features available after estimation.
b y , s t a t s b y , and x i  are allowed; e prefix .    A panel variable must be specified; u x t s e t .                                                                                                                        l e v e l (#)          t confidence level; default is l e v e l (95)    Reporting      v
c e (vcetype )      vcetype  may be c o n v e n t i o n a l , b o o t s t r a p , or j a c k k n i f e
SE      b e t a s              display group-specific best linear predictors
o f f s e t (varname )    include varname  in model with coefficient constrained to 1      n o c o n s t a n t          suppress constant term    Main                                                                                                                        options              description        x t r c  depvar  indepvars  [if ] [in ] [, options ]
S y n t a x
[X T ] x t r c    Random-coefficients regression
T i t l e                                                                                                                                                                                                            also e:  xtrc postestimation h e l p  x t r c                                                                                dialog:  x t r c
1.The consumption Function in the OECD (Pesaran et al. 1999, JASA)
The first example that we examine is a standard consumption function of the Davidson et al. (1978) type for a sample of OECD countries. Similar specifications have also been estimated for a number of developing countries by Haque and Montiel (1989). We assume that the long-run consumption function is given by
1)
where c is the logarithm of real consumption per capita, y is the logarithm of real per capita disposable income, and πis the rate of inflation. Most theories of aggregate consumption would sugg
est that θ1, = 1. The PMG estimation procedure allows us to estimate a common long-run coefficient and test whether it is unity. The inflation variable, . π, is a proxy for various wealth effects, and we would expect θ2, < 0. We assume that all of the variables are I(1) and cointegrated, making u an 1(0) process for all i. In this application we take the maximum lag as being 1; thus the autoregressive distributed lag (ARDL) (1,1,1) equation is
2)
and the error correction equation is
3)
Where:
φ , and the long-run coefficients, θ1 and The error-correction speed of adjustment parameter,
i
θ2, are of primary interest.
MG: all parameters vary across countries
PMG: homogeneity of long run coefficients: θi=θ
Data: jasa2.dta
tst id year
panel variable:  id (strongly balanced)
time variable:  year, 1960 to 1993
delta:  1 unit
/*The pooled mean group estimator, ARDL (1,1,1)*/
Iteration 0:  log likelihood =  2270.3017  (not concave)
Iteration 1:  log likelihood =  2319.1636
Iteration 2:  log likelihood =  2322.938
Iteration 3:  log likelihood =  2326.7589
Iteration 4:  log likelihood =  2327.0742
Iteration 5:  log likelihood =  2327.0749
Iteration 6:  log likelihood =  2327.0749
Pooled Mean Group Regression
(Estimate results saved as pmg)
Log Likelihood    =  2327.075 ------------------------------------------------------------------------------              |      Coef.  Std. Err.      z    P>|z|    [95% Conf. Interval] -------------+---------------------------------------------------------------- ec        |
pi |  -.4658438  .0567332    -8.21  0.000    -.5770388  -.3546488            y |  .9044336  .0086815  104.18  0.000    .8874182    .9214491 -------------+---------------------------------------------------------------- SR          |
ec |  -.1998761  .0321683    -6.21  0.000    -.2629247  -.1368275          pi |
D1. |  -.0182588  .0277523    -0.66  0.511    -.0726522    .0361347            y |
D1. |  .3269355  .0574236    5.69  0.000    .2143873    .4394838        _cons |  .1544507  .0216942    7.12  0.000    .1119307    .1969706 ------------------------------------------------------------------------------ EC:Long run estimates eq. 1)
SR: ECM eq. 3): average coefficients from the individual estimates In the output, the estimated long-run inflation elasticity is significantly negative, as expected.  Also, the estimated income elasticity is significantly positive.
φ<⇒
0long run relation
i
Theoretically, the income elasticity is equal to one. This hypothesis is easily tested: •test [ec]y=1
( 1)  [ec]y = 1
chi2(  1) =  121.18
Prob > chi2 =    0.0000
>>rejection  of the null of unit income elasticity
/*The full option*/
The full option estimates and saves an N + 1 multiple-equation model. The first equation (labeled per option ec) prents the normalized cointegrating vector.
The remaining N equations list the group-specific short-run coefficients.
•xtpmg d.c d.pi d.y if year>=1962, lr(l.c pi y) ec(ec) replace full pmg
------------------------------------------------------------------------------
|      Coef.  Std. Err.      z    P>|z|    [95% Conf. Interval]
-------------+----------------------------------------------------------------
ec          |
pi |  -.4658438  .0567332    -8.21  0.000    -.5770388  -.3546488
y |  .9044336  .0086815  104.18  0.000    .8874182    .9214491
-------------+----------------------------------------------------------------
id_111      |
ec |  -.0378815  .0240594    -1.57  0.115    -.0850371    .0092742
pi |
D1. |  -.2114431  .0866912    -2.44  0.015    -.3813549  -.0415314
y |
D1. |  .5195067    .055876    9.30  0.000    .4099918    .6290217
_cons |  .0336383  .0147912    2.27  0.023    .0046481    .0626285
-------------+----------------------------------------------------------------
id_112  USA    |
ec |  -.0131804  .0551878    -0.24  0.811    -.1213466    .0949858
pi |
D1. |  .0268604  .0720611    0.37  0.709    -.1143767    .1680975
y |
D1. |  .8831993  .1193825    7.40  0.000      .649214    1.117185
_cons |  .0093299  .0285998    0.33  0.744    -.0467247    .0653844
-------------+----------------------------------------------------------------
id_122      |
ec |  -.3322236  .0857815    -3.87  0.000    -.5003523  -.1640949
pi |
D1. |  -.2934725  .1395929    -2.10  0.036    -.5670696  -.0198754
y |
D1. |  .0930621  .1391965    0.67  0.504    -.1797579    .3658821
_cons |  .2540469  .0643696    3.95  0.000    .1278847    .380209
-------------+----------------------------------------------------------------
id_124      |
ec |  -.1729619  .0478032    -3.62  0.000    -.2666545  -.0792692
pi |
D1. |  .0507104  .0884418    0.57  0.566    -.1226324    .2240533
y |
D1. |  .2197053  .0990893    2.22  0.027    .0254939    .4139168
_cons |  .1712243  .0462131    3.71  0.000    .0806482    .2618004
-------------+----------------------------------------------------------------

本文发布于:2023-05-12 02:12:42,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/593394.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图