2022届浙江省杭州市中考数学考前冲刺试卷
一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)
1.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A.点M B.点N C.点P D.点Q
2.长兴是浙江省的北大门,与苏、皖两省接壤,位于太湖西南岸,全县区域面积1430平方公里,现有户籍人口约64万.将1430用科学记数法表示为( )
A.0.143×104 B.1.43×103 C.14.3×102 D.143×10
3.下列图形中,是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
4.在我县举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩(m) | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 |
人数 | 1 | 2 | 4 | 3 | 3 | 2 |
| | | | | | |
这些运动员跳高成绩的中位数和众数分别是( )
A.1.70,1.70 B.1.70,1.65 C.1.65,1.70 D.3,4
5.下列运算中,正确的是( )
A.3a2﹣a2=2 B.(a2)3=a5 C.a2•a3=a5 D.(2a2)2=2a4
6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
7.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为( )
A.1 B.1.2 C.2 D.2.5
8.解分式方程,正确的结果是( )
A.x=0 B.x=1 C.x=2 D.无解
9.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c=n有两个不相等的实数根,其中正确的有( )
A.2个 B.3个 C.4个 D.5个
10.如图,在矩形ABCD中,ADAB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:
①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,
其中正确的有( )
A.2个 B.3个 C.4个 D.5个
二、填空题
11.因式分解:4a3﹣16a= .
12.规定:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,若2⊗x=3,则x= .
13.从分别标有1、2、3、4的四张卡片中一次同时抽出两张,则抽取两张卡片中数字的和为奇数的概率是 .
14.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为 .
15.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为 cm.
16.如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y图象上,则图中过点A的双曲线解析式是 .
三、解答题
17.“分组合作学习”成为我市推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“分组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下: