2023年倍数和因数单元教学反思(八篇)

更新时间:2023-05-11 09:13:00 阅读: 评论:0

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

倍数和因数单元教学反思篇一

1、先从自然数入手,由自然数的概念让学生总结自然数的个数是无限的,最小的自然数是0,没有最大的自然数。又根据生活实际试着让学生把自然数分成奇数和偶数。点名说出什么数是奇数,什么数是偶数,是根据什么分的,这样有一种水到渠成的感觉。

2、由偶数都是2的倍数,复习2的倍数的特征,5的倍数的特征,3的倍数的特征。学生边复习老师边板书,由于大家共同协作,很快找出一个数的最小倍数是它本身,没有最大的倍数。然后总结同时能被2、3整除的数就是6的倍数,引出倍数和因数的意义。让学生随便说一个算式,说明谁是谁的倍数,谁是谁的因数”,学生列举乘法或除法算式,准确表达倍数与因数的关系,加深了学生对倍数与因数相互依存关系的理解和认识。

3、随便给出一个数找出它的所有因数,得出一个数最小的因数是1,最大的因数是它身。根据因数的个数把自然数分成质数、合数和1。复习什么是质数,什么是合数。最小的质数是几,最小的合数是几。20以内的质数。为什么1既不是质数也不是合数。这是根据什么分类的呢?任意给出一个数判断是质数还是合数,若是合数让学生分解质因数。先说分解质因数的方法,然后点名学生板演,教师巡视。指出错误。

4、带领学生一起做练习,让学生边做边说思路。这节课比较好的地方是条理清晰、内容全面;练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性、趣味性。

不足之处是我缺乏个性化的语言评价激活学生的情感,以后需多努力。

倍数和因数单元教学反思篇二

反思教学效果总结了的原因有以下几点:

(一)素数和合数的判断不熟练。一些数如:49、51、91这些数看上去是素数,但其实是合数。这些数经常被学生误认为是素数而导致错误,原因是这些学生就简单的看看,而不愿意用2、3、5等素数去尝试,努力寻找是不是有第3个因数存在。

(二)意思相同,但语句表述不同时,有的学生就不能正确理解。如:在上面的数只有两个因数的数有哪些?其实这道题目就是问在上面的数中素数有哪些。

(三)有的学生缺少分析理解,研究和判断的能力,判断和选择题的错误比较多。例如:1的倍数肯定是奇数。如果一个学生先找到1的倍数,然后根据数的特点作出正确的判断。但有的学生看到1是个奇数,然后就简单地做出它的倍数也是奇数想法。例如:一个数的倍数一定比它的因数大。如果学生找一个数,看看它的最小倍数是哪个?找找它的最大因数是哪个?这样不难找到正确的答案。但是有的倍数简单地被题目的意思误导,加上平时的练习中还有倍数一般都是大的,因数一般都是小的概念,学生容易误判。

教学中,我和学生有时太满足于平时练习的结果,而缺少让学生进行数学思考和表达能力的过程训练。看来在以后的教学中,我要继续改变教学观念,要高度尊重学生,依靠学生,把以往教学中主要依靠教师转变为依靠学生。

建议

1、在新知教学中,注重引导学生进行探究。在本单元中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数” ,找一个数的因数是本课的难点。应该说,找出36的几个因数并不难,难就难在找出36的所有因数。教学中,建议教师不要把方法简单地告诉学生,而是让学生独立去探究,独立写出36的所有因数,在学生反馈的基础上教师再引导学生对有序和无序作比较,学生才能在比较、交流中感悟有序思考的必要性和科学性。交流的过程正是学生相互补充、相互接纳的过程,是对学习内容进行深加工和重组知识的过程,是学生的认知不断走向深入,思维水平不断提升的过程。这是新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生独立思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。

2、寓教于乐,游戏中进行相应的巩固练习。本节课是一节概念课,内容比较枯燥,课本上的练习形式也比较单一,所以在认识倍数和因数后,应安排有趣味的游戏,比如数字转盘游戏,让学生看转盘说指针停止时,内圈的数与外圈的数的关系,进一步认识倍数和因数,又能从中发现倍数和因数的相互依存的关系。在学会找倍数和因数之后也可设计游戏,如:“猜猜一位老师的电话号码”,在一个八位数的号码中已知其中四位,根据有关倍因数关系的问题请学生找出未知的四位号码,以提高学生学习的积极性,稍有难度的练习给学有余力的学生一个证明自己能力的机会,让学生在数学活动中体验到数学学习的趣味性和挑战性,学生运用所学知识解决问题,体会到了学习新知识后的成就感。

3、教师要注重评价的导向作用,让学生在评价中成长。在第一课时学生交流12的因数时,教师展示了三位同学的作业:第一种是无序的,第二种是从小到大有序的,第三种是一对一对有序的。接着老师让第一种方法的学生说说自己的想法,并让其他同学评论,此时大多数学生的评价都认为不好,找得缺漏、无序,这时其实作为老师是否可以问问这种答案“有没有值得肯定的地方?”,毕竟找到的这些答案都是正确地,然后再去寻找更好的方法。如果老师能经常注意这样引导评价,学生自然而然地意识到要先看别人的优点,再看别人的缺点,也给了刚才那位学生一个心理上的安慰,使他能更积极地投入到学习当中去。

倍数和因数单元教学反思篇三

本节课是在学生已经学习了一定的整数知识的基础上进行教学的。

课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。

其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。

本节课的不足之处:

1.练习设计容量少了一些,导致课堂有剩余时间。

2.对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。

倍数和因数单元教学反思篇四

《因数和倍数》是人教版小学数学五年级下册第二单元的起始课,也是一节重要的数学概念课,所涉及的知识点较多,内容较为抽象,对于学生来说是比较难掌握的内容,在这样的前提下,如何能充分发挥学生的主体作用,让他们自主探索,自己感悟概念的内涵,并灵活地运用“先学后教”的模式,达到课堂的高效,在课堂中我做了以下的尝试。

我觉得作为一名教师,重要的是领会教材的编写意图,灵活的运用教材,让每个细节都能发挥它应有的作用。如教材是利用了一个简单的实物图(2行飞机,每行6架;3行飞机,每行4架)引出了要研究的两个乘法算式“2×6=12,3×4=12”直接给出了“谁是谁的因数,谁是谁的倍数”的概念。这样做目的有二:一是渗透了从乘法算式中找因数倍数的方法,二是利用数与数之间的关系明确的看到因数倍数这种相互依存的关系。

但这样做仍不够开放,我是这样做的:课始并没有出示主题图,直接提出问题:“如果有12架飞机,你可以怎样去排列?”学生除了能想到图中的两种排法还能得到第三种,这样做是用开放的问题做为诱因,使学生得到“2×6=12、3×4=12、1×12=12”三个算式,而这些算式不仅能够清晰地体现因数倍数间的关系,更是后面“如何求一个数的因数”的方法的渗透和引导。看来灵活的运用教材,深放领会意图,才能使教学更为轻松、高效!

模式是一种思想或是引子,面对不同的课型,我们应该大胆尝试,不断的积累经验,使模式不再是僵化的,机械的。只要是能促进学生能力形成的东西,我们不能因为要运用模式而把它们淡化,反之,应该想方设法,在不知不觉中体现出来。

如本课中例1是“求18的因数有哪些”,例2是“求2的倍数有哪些”教材的设计已经能够体现学生自主探索知识的轨迹,那我们何不通过一句简短的过渡语让学生进入到下面的学习中呢?而没有必要非要设计出两个“自学指导”让学生按步就搬地往下走,而且让学生对比着去感受一个数“因数和倍数”的求法的不同,比先学例1再学例2的方式更容易让学生发现不同,得到方法,加深对知识的理解,同时也更加体现了学生的自主性,这才是模式的真正目的所在。内涵比形式更重要,发现比引导更有效!

倍数和因数单元教学反思篇五

今天这堂课其实是有点匆忙的。课前的一个小游戏忘了,忘了让学生体会因数和倍数之间的相互联系和依存关系了。明天的课上补上。

满意的一点:模式的提练

在让学生根据算式说了谁是谁的倍数,谁是谁的因数之后,出示了想想做做的第一题,我加了一道:a×b=c,并且让学生用一道算式提练出因数和倍数之间的关系。结果学生都不知道如何表达。我把算式板书上黑板上,是因数×因数=倍数。而后,我又转过去用一道除法算式36÷9=4来让学生找一找谁是谁的因数,谁是谁的倍数,学生的反应都不错,马上就明白了因数和倍数之间的关系。

不满意的地方在于:对于找出36所有因数的有序思考没有强调。当我让学生们自主找出36的所有因数时,许多学生就茫然不知所谓,但是他们并不是不懂,只是不知道如何去写,所以我在黑板上挑选了一些学生的作业加以板书,让学生进行比较。

如:1、36、2、18、3、12、4、9、6

1、2、3、4、6、9、12、18、36

和36÷1=36,36÷2=18,36÷3=12

36÷4=9,36÷6=6

尤其是最后一种方法,我特别注意让学生评价一下这种思考方法的正确性。得出结论是这样思考是可行的。那么我接着告诉他们,这样思考的确是可以,不过,缺少的因数的提取,由此过渡到评价第一种方案和第二种方案,在这儿,我特别示范了一下写因数的方法,即从两边向中间包围。学生们在比较中找出了写因数的方法,明白了写出因数的格式。本来可以相机在这一步让学生体会寻找因数的有序性,结果一急,只是带过了一句。今天在补充习题上出现了问题,我抓了几个学生问为什么强调有序性,学生告诉我:因为可以看得清楚,因为不会遗漏。看起来班上的学生有这方面的意识,在做题目的时候还应该再稍稍提点一下,应该也就不成问题了。

倍数和因数单元教学反思篇六

xxxx小学 xxxxx

教学内容:教材例1、例2

教学目标

1.知识与技能:让学生初步理解因数和倍数的概念,掌握找因数和倍数的方法。学会用列举法找一个数的因数和倍数。

2.过程与方法:借助直观图,先引导学生观察后列出乘法算式,最后结合乘法算式来理解因数与倍数的概念。

3.情感、态度与价值观:理解因数和倍数的意义能及两者之间相互依存的关系。

教学重点:理解因数和倍数的概念。

教学难点:掌握求一个数的因数和倍数的方法。

教学方法:启发式教学法、指导自主学习法。

教学准备:多媒体。

教学过程:

1.出示教材第5页例1。

12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

(1)观察: 引导观察例1中的算式,你发现了什么?(都是除法算式)

(2)分类:你能把上面的除法算式分类吗?

学生分类后,教师组织学生交流,引导学生根据是否整除分为以下两类

第一类 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题:因数和倍数)

(一)、明确因数与倍数的意义。(教学例1)

1. 教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们

就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。

2. 学生尝试。

教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?先同桌互相说一说,再组织全班交流。

3. 深化认识。师:通过刚才的说一说活动,你发现了什么?

引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括o)。

4. 即时练习。指导学生完成教材第5页“做一做”。

小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。

(二)、探索找一个数因数的方法。(教学例2)

1. 出示例2:18的因数有哪几个?

(1) 学生独立思考。

师:根据因数和倍数的意义,想一想18除以哪些整数的结果是整数。

18÷1=18,l和18是18的因数;18÷2=9, 2和9是18的因数;18÷3=6, 3和6是18的因数。引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。

(2)小组合作交流。交流时教师要让学生说明找的方法,引导学生认识:只要想18除以哪些整数的结果是整数,并且要从1开始,一对一对地找,避免遗漏。如果学生还有其他想法,只要合理,教师都应给予肯定。

(3)采用集合图的方法。

教师指出也可用右面的集合图来表示18的全部因数。明确:用图示法表示18的因数时,先画一个椭圆,在椭圆的上面写上“18的因数”,再把18的因数按从小到大的顺序有规律地写在椭圆里,每两个因数之间也用逗号隔开,全部写完后不加句号。

(4)练习。让学生找出30的因数和36的因数,并组织交流。

30的因数有1,2,3,5,6,10,15,30。

36的因数有1,2,3,4,6,9,12,18,36。

指导学生完成教材“练习二”第1、6题。学生独立完成全部练习后教师组织学生进行集体证正。

师:通过本节课的学习,你有什么收获?

板书设计:

因数和倍数

12÷2=6 12是2和6的倍数

2和6是12的因数 18的因数有1,2,3,6,9,18。

一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

作业:教材第7页“练习二”第2(1)题。

第二单元:因数和倍数

第二课时:因数与倍数(2)

教学内容:教材p6例3及练习二第2(1)、3~8题。

教学目标:

知识与技能:通过学习,使学生能自主探究,找出求一个数的倍数的方法。 过程与方法:结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。

情感、态度与价值观:初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。

教学重点:掌握求一个数的倍数的方法。

教学难点:理解因数和倍数两者之间的关系。

教学方法:启发式教学法、指导自主学习法。

教学准备:多媒体。

教学过程:

10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?

1.探索找倍数的方法。(教学例3)

出示例3:2的倍数有哪些?

师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!

师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。

师:大家都是用的什么方法呢?

生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。

生2:我也是用乘法,用2去乘1、乘2……

师:哪些同学也是用乘法做的?

师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?

生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?

师:为什么?(因为2的倍数有无数个)

师:怎么办?(用省略号)

师:通过交流,你有什么发现?

引导学生初步体会2的倍数的个数是无限的。

追问:你能用集合图表示2的倍数吗?

学生填完后,教师组织学生进行核对。

(4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。

4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?

先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:

(1)一个数的最小因数是1,最大因数是它本身。

(2)一个数的最小倍数是它本身,没有最大倍数。

(3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

1.指导学生完成教材第7~8页“练习二”第4、5、6、7题。

学生独立完成全部练习后教师组织学生进行集体证正。

集体订正时,教师着重引导学生认识以下几点:

(1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。

(2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。

(3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。

2.利用求倍数的方法解决生活中的实际问题

出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?

理解题意,分析解答。

教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5

倍数和因数单元教学反思篇七

《因数和倍数》这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

同时这部分内容是比较重要的,为五年级的最小公倍数和最大公因数的学习奠定了基础。

本节可充分发挥学生的主体性,让每个学生都能参加到数学知识的学习中去,调动学生学习的兴趣和主动性。本节课主要从以下几个方面进行教学的。

我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,变抽象为具体。

利用乘法算式,让学生找出3的倍数,这里让学生理解:(1)3的倍数应该是3与一个数相乘的积。(2)找3的倍数是要有一定的顺序,依次用1、2、3……与3相乘。有了找3倍数的方法,在上学生找出2和5的倍数。这样即巩固对例题的理解,同时也为接下来的讨论倍数的特点奠定基础。最后让学生通过讨论发现:(1)一个数的倍数个数是无限的(要用省略号)。(2)一个数的最小倍数是本身,没有最大的倍数。

找一个数因数的方法是本节课的难点。找一个数的因数的方法和倍数相似,大部分学生都用乘法算式寻找一个数的因数,这里教师可以通过几到有序排列的除法算式启发学生进一步理解。强调有序(从小到大),不重复、不遗漏。随后让学生找出15、16的因数有那些。最后通过比较讨论让学生得出因数的特点:(1)一个数因数的个数是有限的。(2)一个数最小的因数是1,最大的因数是本身。(让学生明白所有的数都有因数1).

从学生的作业情况来看,大部分学生掌握的还是不错的,有部分基础差的学生,有如下几点错误出现:1、倍数没有加省略号。2、分不清倍数和因数,倍数也加省略号,因数也加省略号。3、因数有遗漏的情况。从以上情况来看,在今后的教学中要多关注基础比较差的学生,注意补差工作;同时要注意教学中细节的处理。

倍数和因数单元教学反思篇八

教科书第70-72页的例题和“试一试”、“想想做做”第1-3题。

1、让学生通过操作,利用乘法算式,认识倍数的因数的意义,理解倍数和因数的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数的某些特征。

2、让学生体会一个数的倍数与因数之间相互依存的关系,发展学生的数感,培养学生观察、分析、抽象能力,并在找一个数的倍数和因数的过程中,培养学生思维的有序性。

3、使学生感悟数学知识内在联系的逻辑美,增强学生学习数学的兴趣。

1、理解倍数与因数的意义及相互依存关系。

2、掌握找一个数的倍数和因数的方法。

1、理解倍数与因数的相互依存关系。

2、找全一个数的所有因数。

教学具准备:小黑板、12个小正方形

陶老师先来考考大家的语文水平,你能用“()是()的()”这样一句话来表示陶老师和你的关系吗?

人与人之间有这样相互依存的关系,我们的数学中也有这样相互依存的关系,相信通过本节课的学习你会有所发现。

1、出示12个小正方形。

师:数一数,一共有几个小正方形?如果老师请你把这12个同样的小正方形拼成一个长方形,会拼吗?能不能用一条简单的乘法算式表达出来?

2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。

3、根据学生的回答,适时贴出各种不同摆法:

12×1=12

6×2=12

4×3=12

4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)

5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。

6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?

说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的自然数。

7、说一说

(1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。

(2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。

3、5、18、20、36

1、找一个数的因数。

(1)谈话:看来同学们对于倍数和因数已经掌握得不错了。不过刚才陶老师在听的时候发现了一个奥秘,好几个数都是36的因数,你发现了吗?这五个数中那些数是36的因数?

其实要找36的一两个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?

由于这个问题有一点难度,所以陶老师作几点说明:

①思考一下,什么样的数是36的因数?

②可以独立完成,也可以同桌合作完成。

③想一想怎么找不重复不遗漏,如有困难可参照书本第71页。

④写下因数,如果能把怎么找到的方法写在作业纸上更好。

(2)学生找完后交流:你是怎么找的?怎样找不重复不遗漏?

(3)小结:为了不重复不遗漏,我们在寻找一个数的因数时,可以按一定顺序,一组一组地写出36的所有因数。

(4)完成“试一试”,然后集体交流。

2、找一个数的倍数。

(1)谈话:寻找一个数的因数大家掌握得不错,这节课还要研究倍数呢!你能找出3的倍数吗?想一想,什么样的数是3的倍数?

(2)师生共同寻找。

提问:怎么找不重复不遗漏?能全部说完吗?可以怎样表示3的倍数?

(3)小结并规范写法:

3的倍数:3、6、9、12、15……

(4)完成“试一试”,然后集体交流。

3、探索一个数的倍数和因数的特点:

①观察比较:一个数的倍数和因数有什么特点呢?

②学生在小组内进行比较、分析、讨论,然后集体交流。

③小结归纳:一个数的倍数的个数是无限的,一个数的因数的个数是有限的;一个数的倍数中最小的是它本身,最大的不存在,而一个数的

因数中最小的是1,最大的是它本身。

4、填一填。

15的因数有()

30以内7的倍数有()

通过本节课的学习,你有什么收获?你发现数学中相互依存的关系了吗?其实数学中有趣的事儿多着呢!

阅读《神奇而有趣的“完美数”》,感受数学的神奇。

学生尝试寻找第二个完美数,师提示:第二个完美数比20大,比30小,是个双数,而且正好是老师的年龄。

《数学补充习题》

总的感觉是上好一堂课不容易。倍数和因数是学生闻所未闻的两个新概念,是纯知识性的内容,而且整节课的容量较大,学生能有效的掌握每一个知识点比较困难。为了更好更有效的达到教学目的,突破教学难点,我主要注重下面三个方面的设计:

1、捕捉生活与数学之间的联系,帮助学生理解概念间的关系。

试上下来我感觉学生对倍数因数间的相互依存关系理解不到位,看着学生我突然想到可以利用我与学生的关系呀。于是我把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。

2、以思维的条理性和有序性作为难点的突破口。

在教学一个数的因数时,我让学生通过比较发现,有序的思考一个数的因数不但可以避免重复、遗漏,而且书写整洁清楚。让学生充分感受有条理、有序的思考是一种非常有效的学习方法。当学习求一个数的倍数时,学生就自然而然的去有序的思考,通过合作交流,学生作业的汇报,发现只有有序的去找,才没有遗漏,没有重复。整节课下来,我发现这种有序思维不但能加速解决数学问题的思维进度,而且还有利于优化学生的思维品质,快速发展学生的思维。

3、以精心设计的练习作为有效训练的载体。

为了帮助学生理解数和数之间的倍数和因数关系,练习中我设计了72÷8=9这道除法算式,让学生说说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数,这样学生就明白了除法算式中也有倍数和因数关系。接着我有设计了3、5、18、20、36这5个数,运用所学知识让学生选择性说说哪两个数存在倍数和因数的关系。这样的设计,培养了学生观察、分析问题、口头表达的能力,也为了更进一步巩固了倍数和因数的概念理解。在课尾,我还设计了寻找“完美数”的活动,这一活动充分调动学生参与学习、主动学习的积极性,并让学生感受到了数学的神齐、有趣,激发了学生学习数学的兴趣。

本文发布于:2023-05-11 09:13:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/583314.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:因数   倍数   单元
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图