编辑本段1 概述
语义学(Semantics),也作“语意学”,是一个涉及到语言学、逻辑学、计算机科学、自然语言处理、认知科学、心理学等诸多领域的一个术语。虽然各个学科之间对语义学的研究有一定的共同性,但是具体的研究方法和内容大相径庭。语义学的研究对象是自然语言的意义,这里的自然语言可以是词汇,句子,篇章等等不同级别的语言单位。但是各个领域里对语言的意义的研究目的不同:
语言学的语义学研究目的在于找出语义表达的规律性、内在解释、不同语言在语义表达方面的个性以及共性;
逻辑学的语义学是对一个逻辑系统的解释,着眼点在于真值条件,不直接涉及自然语言;
计算机科学相关的语义学研究在于机器对自然语言的理解;
认知科学对语义学的研究在于人脑对语言单位的意义的存储及理解的模式。
编辑本段1.1语言学的语义学
若从严格意义上的语言学研究来分类,在现代语言学的语义学中,可以分为结构主义的语义学研究和生成语言学的语义学研究。
结构主义语义学是从20世纪上半叶以美国为主的结构主义语言学发展而来的,研究的内容主要在于词汇的意义和结构,比如说义素分析,语义场,词义之间的结构关系等等。这样的语义学研究也可以称为词汇语义学,词和词之间的各种关系是词汇语义学研究的一个方面,例如同义词、反义词,同音词等,找出词语之间的细微差别。
生成语义学是20世纪六七十年代流行于生成语言学内部的一个语义学分支,是介于早期的结构主义语言学和后来的形式语义学之间的一个理论阵营。生成语义学借鉴了结构语义学对义素的分析方法,比照生成音系学的音位区别特征理论,主张语言的最深层的结构是义素,通过句法变化和词汇化的各种手段而得到表层的句子形式。
形式语义学是从20世纪70年代开始发展出来的一个理论阵营。最初的研究开始于蒙太古以数理逻辑方法对英语的研究,后来经过语言学家和哲学家的共同努力,发展成为一个独立的学科,并且摒弃了蒙太古对生成语言学的句法学的忽视,强调语义解释和句法结构的统一,从而最终成为生成语言学的语义学分支。现今的形式语义学的研究在欧美的语言学
系都很繁荣,哲学系对形势语义学的研究已经渐渐失去了原有的兴趣,进而转向了心灵哲学的研究。
编辑本段1.2逻辑学的语义学
现代的逻辑学,或者说形式逻辑、数理逻辑等,其目的是设计出来一套形式语言系统,并对其作出语义解释。这样的形式语言系统是一个个抽象的封闭体系,但是可以应用于很多的不同领域,比如说法律、计算机等等领域对逻辑学的应用。
一个逻辑系统通常由三个部分组成,即词汇部分、句法部分和基于模型论的语义部分。
所谓的词汇部分就是列举出一个形式系统所使用的所有符号,
句法部分是这些符号的组合规则,规定什么样的符号序列可以是这个系统的句子,
语义部分是对合格句子的解释,这样的解释通常是:在一个模型中进行的对真值条件推导。
逻辑学的语义学着眼点在于逻辑系统的语义解释,是一个理想化的模型系统,不直接涉及
自然语言。但是在形式语义学中,很多的语义学概念是从逻辑学的语义学中引申来的。
Formal mantics is the study of the mantics, or interpretations, of formal languages. A formal language can be defined apart from any interpretation of it. This is done by designating a t of symbols (also called an alphabet) and a t of formation rules (also called a formal grammar) which determine which strings of symbols are well-formed formulas. When transformation rules (also called rules of inference) are added, and certain ntences are accepted as axioms (together called a deductive system or a deductive apparatus) a logical system is formed. An interpretation is an assignment of meanings to the symbols and truth-values to its ntences. [1]
The truth conditions of various ntences we may encounter in arguments will depend upon their meaning, and so conscientious logicians cannot completely avoid the need to provide some treatment of the meaning of the ntences. The mantics of logic refers to the approaches that logicians have introduced to understand and determine that part of meaning in which they are interested; the logician traditionally is not interested in the s
entence as uttered but in the proposition, an idealid ntence suitable for logical manipulation.
Until the advent of modern logic, Aristotle's Organon, especially De Interpretatione, provided the basis for understanding the significance of logic. The introduction of quantification, needed to solve the problem of multiple generality, rendered impossible the kind of subject-predicate analysis that governed Aristotle's account, although there is a renewed interest in term logic, attempting to find calculi in the spirit of Aristotle's syllogistic but with the generality of modern logics bad on the quantifier.
The main modern approaches to mantics for formal languages are the following:
Model-theoretic mantics is the archetype of Alfred Tarski's mantic theory of truth, bad on his T-schema, and is one of the founding concepts of model theory. This is the most widespread approach, and is bad on the idea that the meaning of the various parts of the propositions are given by the possible ways we can give a recursively specified group of interpretation functions from them to some predefined mathematical do
mains: an interpretation of first-order predicate logic is given by a mapping from terms to a univer of individuals, and a mapping from propositions to the truth values "true" and "fal". Model-theoretic mantics provides the foundations for an approach to the theory of meaning known as Truth-conditional mantics, which was pioneered by Donald Davidson. Kripke mantics introduces innovations, but is broadly in the Tarskian mold.
Proof-theoretic mantics associates the meaning of propositions with the roles that they can play in inferences. Gerhard Gentzen, Dag Prawitz and Michael Dummett are generally en as the founders of this approach; it is heavily influenced by Ludwig Wittgenstein's later philosophy, especially his aphorism "meaning is u".
Truth-value mantics (also commonly referred to as substitutional quantification) was advocated by Ruth Barcan Marcus for modal logics in the early 1960s and later championed by Dunn, Belnap, and Leblanc for standard first-order logic. James Garson has given some results in the areas of adequacy for intensional logics outfitted with such a mantics. The truth conditions for quantified formulas are given purely in terms of truth with no appeal to domains whatsoever (and hence its name truth-value mantics).