《数学学科知识与教学水平》(高级中学)
一、考试目标
1.数学学科知识的掌握和使用。掌握大学本科数学专业基础课程的知识和
高中数学知识。具有在高中数学教学实践中综合而有效地使用这些知识的水平。
2.高中数学课程知识的掌握和使用。理解高中数学课程的性质、基本理念
和目标,熟悉《普通高中数学课程标准(实验)》(以下简称《课标》)规定的教
学内容和要求。
3. 数学教学知识的掌握和应用。理解相关的数学教学知识,具有教学设计、
教学实施和教学评价的水平。
二、考试内容模块与要求
1.学科知识
数学学科知识包括大学本科数学专业基础课程和高中课程中的数学知识。
大学本科数学专业基础课程的知识是指:数学分析、高等代数、解析几何、
概率论与数理统计等大学课程中与中学数学密切相关的内容,包括数列极想念父亲的句子 限、函
数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率
与数理统计的基础知识。
其内容要求是:准确掌握基本概念,熟练实行运算,并能够利用这些知识去
解决中学数学的问题。
高中数学知识是指《课标》中所规定的必修课全部内容、选修课中的系列1、
2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2
(矩阵与变换)、选修4—4(坐标系与参数方程怎么设置延迟到账 )、选修4—5(不等式选讲)。
其内容要求是:理解高中数学中的重要概念,掌握高中数学中的重要公式、
定理、法则等知识,掌握中学数学中常见的思想方法,具有空间想象、抽象概括、
推理论证、运算求解、数据处理等基本水平以及综合使用水平。
2.课程知识
理解高中数学课程的性质、基本理念和目标。
熟悉动漫形象 《课标》所规定教学内容的知识体系,掌握《课标》对教学内容的要求。
理解《课标》各模块知识编排的特点。
能使用《课标》指导自己的数学教学实践。
3.教学知识
理解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教股份协议书范本 学评价
等基本环节的教学过程。
掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
掌握概念教学、命题教学等数学教学知识的基本内容。
掌握合作学习n95口罩图片 、探究学习、自主学习等中学数学学习方式。
掌握数学教学评价的基本知识和方法。
4.教学技能
(1)教学设计
能够根据学生已有的知识水平和数学学习经验,准确把握所教内容与学生已
学知识的联系。
能够根据《课标》的要求和学生的认知特征确定教学目标、教学重点和难点。
能准确把握数学教学内容,揭示数学概念、法则、结论的发展过程和本质,
渗透数学思想方法,表达应用与创新意识。
能选择适当的教学方法和手段,合理安排教学过程和教学内容,在规定的时
间内完成所选教学内容的教案设计。
(2)教学实施
能创设合理的数学教学情境,激发学生的数学学习兴趣,引导学生自主探索、
猜测和合作交流。
能依据数学学科特点和学生的认925银和999银的区别 知特征,恰当地使用教学方法和手段,有效
地实行数学课堂教学。
能结合具体数学教学情境,准确处理数学教学中的各种问题。
(3)教学评价
能采用不同的方式和方法,对学生知识与技能、过程与方法和情感、态度与
价值观等方面实行恰当地评价。
能对教师数学教学过程实行评价。
能够通过教学评价改进教学和促动学生的发展。
三 、 试卷结构
模 块 比 例 题 型
学科知识 41% 简 答 题
单项选择题
解 答 题
单项选择题
简 答 题 课程知识 18%
论 述 题
单项选择题
简 答 题
案例分析题
教学设计题
单 项 选 择 题 : 约27%
非 选 择 题 : 约73%
教学知识 8%
教学技能 33%
合 计 100%
四、题型例如
1.单项选择题
(x)xlnx(0,甜美女生 )f
在 上是 (1)函数
A.单调增函数 B.单调减函数 C.上凸函数 D.下凸函数
(2) 描写雪景 在高中数学教沙滩 学中,课堂小结的方式多种多样。有一种常见的小结方
式是:结合板书内容梳理本课教学重点和难点的学习思路,同时提醒学生课下复
习其中的要点。这种小结方式的作用在于
A.升华情感,引起共鸣 B.点评议论,提升理解
C.巧设悬念,激发兴激素治疗的副作用 趣 D.总结回顾,强化记忆
(3)在高等代数中,有一种线性变换叫做正交变换,即不改变任意两点距
离的变换。以下变换中不是正交变换的是
A. 平移变换 B. 旋转变换
C. 反射变换 D. 相似变换
2.简答题
(1)根据以下图编一道函数的应用问题
(2)一位教师讲了一堂公开课《函数》,多数听课教师认为他讲出了函数概
念的本质,但课堂教学有效性缺乏,突出表现在课堂提问方面。你认为应注意哪
些问题才能提升课堂提问的有效性(请结合自己对《函数》的教学设想来谈)?
3.解答题
已知0 < ,试证:
xxx
123
sinxsinx
23
sinxsinx
12
xxxx
1223
4.论述题
在必修模块中,将平面解析几何内容放在函数与立体几何之后,对这种安
排谈谈你的看法。
5.案例分析题
11
阅读以下两个对于
abab
22
22
不等式的教学活动设计,然后回答以下问题。
设计1:
活动(1)让学生分别取a,b为具体数值,检验该不等式是否成立。
11
22
的几何意义。 活动(2)讨论: , ,
ab
ab
22
讨论(1):三个图形的关系:
讨论(2):该不等式何时等号成立,何时不等号成立?
活动(3)不等式的严格证明
讨论(3):若有三个数:a>0,b>0,c>0,是否会有一个什么相对应的不等
式?
设计2:
11
活动:学生分组讨论不等式 的证明方法。
abab
22
22
学生分组展示,讨论。
请回答如下问题:
(1)分析设计1的教学设计意图。
(2)结合本案例分析合情推理与演绎推理的关系,简述教学
过程中如何引导学生经历一个由合情推理到演绎推理的过程。
(3)比照分析两个教学设计的理念。
6.教学设计题
就高中数学“人教版教材”必修1第一单元中的函数概念第一课时的内容,
设计一个教学方案(将提供教材内容)。
a
b
本文发布于:2023-04-24 00:56:21,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/82/511678.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |