涡流效应[整理版]

更新时间:2023-04-21 06:43:57 阅读: 评论:0


2023年4月21日发(作者:口头作文)

涡流效应[整理版]

涡流效应

闭合铁芯(或一大块导体)处于交变磁场中,交变的磁通量使闭合铁芯(或一大

块导体)中产生感应电流,形成涡电流。

假如铁芯(或导体)是纯铁(纯金属)的,则由于电阻很小,产生的涡电流很大,

电流的热效应可以是铁(或金属)的温度达到很高的,甚至是铁(或金属)的熔点,使

铁熔化。

涡流

eddy current

涡流产生原因:

当线圈中的电流随时间变化时,由于电磁感应,附近的另一个线圈中会产生感

应电流。实际上这个线圈附近的任何导体中都会产生感应电流。如果用图表示这样

的感应电流,看起来就象水中的旋涡,所以我们把它叫做涡电流。

电磁感应作用在导体内部感生的电流。又称为傅科电流。导体在磁场中运动,

或者导体静止但有着随时间变化的磁场,或者两种情况同时出现,都可以造成磁力

线与导体的相对切割。按照电磁感应定律,在导体中就产生感应电动势,从而驱动

电流。这样引起的电流在导体中的分布随着导体的表面形状和磁通的分布而不同,

其路径往往有如水中的漩涡,因此称为涡流。导体在非均匀磁场中移动或处在随时

间变化的磁场中时,因涡流而导致能量损耗称为涡流损耗。涡流损耗的大小与磁场

的变化方式 、导 体的运动 、导体的几何形状、导体的磁导率和电导率等因素有

关。涡流损耗的计算需根据导体中的电磁场的方程式,结合具体问题的上述诸因素

进行。

电动机,变压器的线圈都绕在铁心上。线圈中流过变化的电流,在铁心中产生

的涡流使铁心发热,浪费了能量,还可能损坏电器。因此,我们要想办法减小涡

流。途径之一是增大铁心材料的电阻率,常用的铁心材料是硅钢。如果我们仔细观

察发电机、电动机、和变压器,就可以看到,它们的铁心都不是整块金属,而是用

许多薄的硅钢片叠合而成。为什么这样呢,原来,把块装金属置于随时间变化的磁

场中或让它在磁场中运动时,金属块内将产生感应电流。这种电流在金属块内自成

闭合回路,很像水的漩涡,因此叫做涡电流简称涡流。整块金属的电阻很小,所以

涡流常常很强。如变压器的铁心,当交变电流穿过导线,时穿过铁心的磁通量不断

随时间变化,它在副边产生感应电动势,同时也在铁心中产生感应电动势,从而产

生涡流。这些涡流使铁心大量发热,浪费大量的电能,效率很低。但涡流也是可以

利用的,在感应加热装置中,利用涡流可对金属工件进行热处理。

大块的导体在磁场中运动或处在变化的磁场中,都要产生感应电动势,形成涡

流,引起较大的涡流损耗。为减少涡流损耗,交流电机、电器中广泛采用表面涂有

薄层绝缘漆或绝缘的氧化物的薄硅钢片叠压制成的铁心,这样涡流被限制在狭窄的

薄片之内,磁通穿过薄片的狭窄截面时,这些回路中的净电动势较小,回路的长度

较大,回路的电阻很大,涡流大为减弱。再由于这种薄片材料的电阻率大(硅钢的

涡流损失只有只有普通钢的1/51/4),从而使涡流损失大大降低。

另一方面,利用涡流作用可以做成一些感应加热的设备,或用以减少运动部件

振荡的阻尼器件等。

电磁感应作用在导体内部感生的电流。又称为傅科电流。导体在磁场中运动,

或者导体静止但有着随时间变化的磁场,或者两种情况同时出现,都可以造成磁力

线与导体的相对切割。按照电磁感应定律,在导体中就产生感应电动势,从而

驱动电流。这样引起的电流在导体中的分布随着导体的表面形状和磁通的分布而不

同,其路径往往有如水中的漩涡,因此称为涡流。导体在非均匀磁场中移动或处在

随时间变化的磁场中时,因涡流而导致能量损耗称为涡流损耗。涡流损耗的大小与

磁场的变化方式 、导 体的运动 、导体的几何形状、导体的磁导率和电导率等因

素有关。涡流损耗的计算需根据导体中的电磁场的方程式,结合具体问题的上述诸

因素进行。

如果我们仔细观察发电机、电动机、和变压器,就可以看到,它们的铁心都不

是整块金属,而是用许多薄的硅钢片叠合而成。为什么这样呢, 原来,把块装金属

置于随时间变化的磁场中或让它在磁场中运动时,金属块内将产生感应电流。这种

电流在金属块内自成闭合回路,很像水的漩涡,因此叫做涡电流简称涡流。整块金

属的电阻很小,所以涡流常常很强。如变压器的铁心,当交变电流穿过导线,时穿

过铁心的磁通量不断随时间变化,它在副边产生感应电动势,同时也在铁心中产生

感应电动势,从而产生涡流。这些涡流使铁心大量发热,浪费大量的电能,效率很

低。但涡流也是可以利用的,在感应加热装置中,利用涡流可对金属工件进行热处

理。

大块的导体在磁场中运动或处在变化的磁场中,都要产生感应电动势,形成涡

流,引起较大的涡流损耗。为减少涡流损耗,交流电机、电器中广泛采用表面涂有

薄层绝缘漆或绝缘的氧化物的薄硅钢片叠压制成的铁心,这样涡流被限制在狭窄的

薄片之内,磁通穿过薄片的狭窄截面时,这些回路中的净电动势较小,回路的长度

较大,回路的电阻很大,涡流大为减弱。再由于这种薄片材料的电阻率大(硅钢的

涡流损失只有只有普通钢的1/51/4),从而使涡流损失大大降低。

另一方面,利用涡流作用可以做成一些感应加热的设备,或用以减少运动部件

振荡的阻尼器件等。

铁磁材料在交变磁场作用下会产生涡流损耗,对铁磁材料的涡流损耗进行了定

量分析,根据铁磁材料样品表面的边界条件,求解麦克斯韦方程,得出涡流损耗系数

的定量表达式,

开关变压器第九讲 变压器铁芯的涡流损耗分析

陶显芳 时间:20100122

:

关键词:开关电源变压器

康佳集团

当交变磁力线从导电体中穿过时,导电体中就会产生感应电动势,在感应电动

势的作用下,在导电体中就会产生回路电流使导体发热;这种由于交变磁力线穿过

导体,并在导体中产生感应电动势和回路电流的现象,人们把它称为涡流,因为它

产生的回路电流没有作为能量向外输出,而是损耗在自身的导体之中。

开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低

开关电源变压器的涡流损耗,

是开关电源变压器或开关电源设计的一个重要内容。

开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低

开关电源变压器的涡流

损耗,是开关电源变压器或开关电源设计的一个重要内容。

变压器生产涡流损耗的原理是比较简单的,由于变压器铁芯除了是一种很好的

导磁材料以外,同时它也属于一种导电体;当交变磁力线从导电体中穿过时,导电

体中就会产生感应电动势,在感应电动势的作用下,在导电体中就会产生回路电流

使导体发热;这种由于交变磁力线空的近义词 穿过导体,并在导体中产生感应电动势和回路电

流的现象,人们把它称为涡流,因为它产生的回路电流没有作为能量向外输出,而

是损耗在

自身的导体之中。

单激式开关电源变压器的涡流损耗计算与双激式开关电源变压器的涡流损耗计

算,在方法上是有区别的。但用于计算单激式开关电源变压器涡流损耗的方法,只

需稍微变换,就可以用于对双激式开关变压器

的涡流损耗进行计算。

例如,把双激式开关电源变压器的双极性输入电压,分别看成是两次极性不同

的单极性输入电压,这样就可以实现对于双激式开关电源变压器涡流损耗的计算。

因此,下面仅对单激式开关变压器的涡流损耗

计算进行详细分析。

当有一个直流脉冲电压加到变佛乘 压器初级线圈的两端时,在变压器初级线圈中就

就有励磁电流通过,并

在变压器铁芯中产生磁场强度H和磁通密度B,两者由下式决定:

传统的变压器铁芯为了降低涡流损耗,一般都把变压器铁芯设计成由许多薄铁

片,简称为铁芯片,互

相重迭在一起组成,并且铁芯片之间互相绝缘。

2-18表示变压器铁芯或变压器铁芯中的一铁芯片。我们可以把这些铁芯片

看成是由非常多的suv全称 “线圈”(如图中虚线所示)紧密结合在一起组成;当交变磁力线

从这些“线圈”中垂直穿过时,在这些“线圈”中就会产生感应电动势和感应电

流,由于这些“线圈”存在电阻,因此这些“线圈”要损耗电磁能量。

在直流脉冲作用期间,涡流的机理与正激电压输出的机理是基本相同的。涡流

产生磁场的方向与励磁

电流产生磁场的方向正好相反,在铁芯片的中心处去磁力最强,在边缘去磁力

为零。

因此,在铁芯片中磁通密度分布是不均匀的,即最外层磁场强度最大,中心处

最小。如果涡流退磁作

用很强,则磁通密度的最大值可能远远超过其平均值,该数值由已知脉冲的幅

度和宽度来决定。

沿铁芯片截面的磁场分布,可以用麦克斯韦的方程式来求得;麦克斯韦的微分

方程式为:

上式中 为变压器铁芯的平均导磁率,为铁芯的电阻率,负号表示涡流产生的

磁场方向与励磁好眼泪坏眼泪 电流产生的磁场方向相反。rot Erot Hx分别表示电场和磁场

的旋度,即涡旋电场和涡旋磁场的强度。HxHyHz分别磁场强度H的三个分

;BxByBz分别磁感应强度B的三个分量;ExEyEz分别电

场强度H的三个分量。

由于单激式开关电源变压器铁芯的磁滞回线面积很小,其磁化曲线基本上可以

看成一根直线,导磁率

也可以看成是一个常数;因此,这里使用平均导磁率来取代意义广泛的导磁

x = 0时,正好位于铁芯片的中心,此处的磁场强度最小,即此点的描写山的古诗名句 导数值

等于0,由此求得积分常数

c1= 0

由于在变压器铁芯片内,截面磁场强度的平均值Ha,在任一时间内都必须等于

电磁感应所要求的值,即满

(2-45)式的要求,因此对应图2-18(2-58)式求平均值得:

2-19-a和图2-19-b分别是由(2-61)式给出的,铁芯片中磁场强度按水平方

向分布的函数H(x)

按时间分布的函数H(t)曲线图。

从图2-19-a中可以看出,由于涡流产生反磁化作用的缘故,在铁芯或铁芯片

中心磁场强度最低边缘磁

场强度最高。

在图2-19-b中,随着时间线性增长部分是变压器初级线圈励磁电流产生的磁

;Hb是为了补偿涡流

产生的去磁场,而由变压器初级线圈另外提供电流所产生的磁场。

从图2-19-b可以看出,涡流损耗对变压器铁芯中磁场强度(平均值)的影响,

与变压器正激输出时,次级线圈中电流产生的磁场对变压器铁芯磁场的影响,基本

是一样的。值得注意的是,如好看的古代言情小说 果用同样方法对

y轴方向进行分析,也可以得到同样的结果。

根据(2-62)式可知,铁芯或铁芯片表面的磁场由两个部分组成:

(1)平均磁场,它随时间线性增长,由线圈中固定的电动势感应所产生;

(2)常数部分,它不随时间变化,由补偿涡流的产生的去磁场所形成。

2-20-a就是根据(2-67)(2-68)式画出的开关变压器受涡流影响时,输入

端磁化过程的等效电路图。

2-20-a中,Rb为涡流损耗等效电阻,N为变压器初级线圈。由此可以看

处,由于受涡流损耗的影响,

变压器铁芯被磁化时,相当于一个涡流损耗等效电阻Rb与变压器初级线圈N

并联。

2-20-b是更形象地把涡流损耗等效成一个变压器次级线圈N2给损耗电阻

Rb2提供能量输出,流过

,可以通过电磁感应在变压器初级线圈N1中产生电流 变压器次级线圈N2

的电流

根据(2-66)式和图2-20,可求得变压器的涡流损耗为:

由此,我们可以看出:变压器铁芯的涡流损耗,与磁感强度增量和铁芯的体积

成正比,与铁芯片厚度

的平方成正比,与电阻率及脉冲宽度的平方成反比。

值得注意的是,上面各式中代表孩子睡觉打呼噜 面博士论文一般多少字 积S的属性,它既可以代表某一铁芯片的截

面积,也可以代表变压器铁芯的总面积,当S变压器铁芯的总面积时,相当于上面

结果是很多单个铁芯片涡流损耗的代数和。同理,以上各式中代表铁芯片厚度

,既可以代表某一铁芯片的厚度,也可以代表变压器铁芯的总厚度,因

为铁芯片的厚度的取值是任意的。

但是,在变压器铁芯总面积相等的情况下,由一块铁芯片或多块相同厚度的铁

芯片组成的变压器铁芯,

其涡流损耗是不相同的。例如,在变压器铁芯总面积相等的情况下,由一块铁

芯片组成的变压器铁芯的涡流损耗,是由两块铁芯片组成的变压器铁芯涡流损耗的

4;如果两者铁芯片的数目的比值为3倍,那么涡流损耗的比值就是9倍。由此

可知,涡流损耗是按n2递减的,其中n为变压器铁芯芯片的个数。

实际用(2-69)式来计算开关变压器的涡流损耗还是有一定局限性的,因为,在

(2-69)式的推导过程中并没有考虑两块铁芯片之间涡流磁场的互相影响,从原理

上来说变压器铁芯中间的铁芯片与边缘的

铁芯片之间涡流磁场互相影响程度是不一样的;并且铁芯片与铁芯片之间不可

能完全绝缘。

另外,目前大多数开关变压器使用的铁芯材料基本上都是铁氧体导磁材料,这

些以铁氧体为材料的变压器铁芯是按陶瓷的生产工艺,先把铁磁混合材料冲压成

型,然后加高温烧结而成,因此它是一个整体,

或为了安装方便把它分成两个部分组合而成。

如果把以铁氧体变压器铁芯的形状看成是一个圆柱体,那么(2-50)(2-51)

麦克斯韦一维方程式就可以看成是电磁场能量是由圆柱体中心向周围传播和散发的;

这样圆柱形变压器铁芯就相当于由不同内外径,厚度变量为 的多个圆筒体组合而

成。或者,把整个铁氧体变压器铁芯,看成为由单个厚度为d/2

的圆柱体组成,这里d为圆柱体的直径。

2-21就是用来求铁氧体圆柱体变压器铁芯内某截面磁场分布的原理图,图

中虚线表示交变磁场在变压器铁芯内部感应产生涡流。我们用同样的方法,从(2-

59)开始对表示磁场分布的(2-58)式进行积分

求平均值,然后求出积分常数c2,即可以求得圆柱体铁芯内的磁场分布式:

上面(2-70)式是表示圆柱体铁芯截面沿,轴方向的磁场分布图。其实磁场分布

在整个铁芯截面的xy平面内都是以中心对称的。这样圆柱形变压器铁芯中的磁场

强度在xy平面的分布函数H(x,y)曲面,就相

当于把图2-19-a的函数曲线,以中心为圆心旋转一周而得到的新图形。

2-22-a和图2-22-b是圆柱形铁芯中磁场强度按水平分布的函数H(x,y)曲面

图和按时间分布的函数

H(t)曲线图。

根据上面分析,以同样方法我们可以求出圆柱体变压器铁芯的涡流损耗为:

由此我们对园柱体变压器铁芯同样可以得出结论:圆柱体变压器铁芯的涡流损

耗,与磁感强度增量和

铁芯的体积成正比,与铁芯直径的平方成正比,与电阻率及脉冲宽度的平方成

反比。

或者,圆柱体变压器铁芯的涡流损耗,与磁感强度增量以及铁芯直径的四次方

成正比,与电阻率及脉

冲宽度的平方成反比。

(2-71)式与(2-69)式在原理上没有本质上的区别,因此,图2-20的等效电路

对于(2-71)式同

样有效。

上面对涡流工作原理的分析,虽然看起来并不是很复杂,但要精确计算涡流损

耗的能量是非常困难的。因为很难精确测量出变压器铁芯的损耗电阻,特别是,目

前大多数开关变压器使用的铁芯材料,基本上都是铁氧体导磁材料;这些铁氧体变

压器铁芯是由多种铁磁金属材料与非金属材料混合在一起,然后按陶瓷

的生产工艺,把铁磁混合材料冲压成型,最后加高温烧结而成的。

由于铁氧体属于金属氧化物,大部分金属氧化物都具有半导体材料的共同性

质,就是电阻率会随温度变化,并且变化率很大。热敏电阻就是根据这些性质制造

出来的,温度每升高一倍,电阻率就会下降(或上升)好几倍,甚至几百倍。大多数

热敏电阻的材料也属于金属氧化物,因此,铁氧体也具有热敏电阻的

性质。

铁氧体变压器铁芯在常温下,虽然电阻率很大,但当温度升高时,电阻率会急

速下降;相当于图2-20-a中的Rb涡流等效电阻变小,流过Rb的电流增加;当温度

升高到某个极限值时,变压器初级线圈的有效电感量几乎下降到0,相当于导磁率

也下降到0,或变压器初、次级线圈被短路,此时的温度称为居里温度,

Tc表示。因此,铁氧体的电阻率和导磁率都是不稳定的,铁氧体开关变压

器的工作温度不能很高,一般

不要超过

2-23是日本TDK公司高导磁率材料H5C4系列磁芯初始导磁率 随温度变化

的曲线图。

顺便说明,图2-23中的初始导磁率 一般是用磁环作为样品测试得到的,测试

信号的频率一般比较低,仅为10kHz,并且测试时一般都选用最大导磁率作为结果;

因此,实际应用中的开关变压器磁芯的导磁率

并没有这么高。


本文发布于:2023-04-21 06:43:57,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/507218.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:涡电流
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图