2023年4月17日发(作者:佳佳基)LVDS接口标准:
LVDS接口是LCD Panel通用的接口标准,以8-bit Panel为例,涉及5组传输线,其
中4组是数据线,代表Tx0+/ Tx3+/Tx3-。尚有一组是时钟信号,代表TxC+/TxC-。
相应的在Panel一端有5组接受线。假如是6-bit Panel则只有3组数据线和一组时钟线。
LVDS接口又称RS-644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。
LVDS即低电压差分信号,这种技术的核心是采用极低的电压摆幅高速差动传输数据,可以
实现点对点或一点对多点的连接,具有低功耗、低误码率、低串扰和82年
低辐射等特点,其传输
介质可以是铜质的PCB连线,也可以是平衡电缆。LVDS在对信号完整性、低抖动及共模特
性规定较高的系统中得到了越来越广泛的应用。目前,流行的LVDS技术规范有两个标准:
一个是TIA/EIA(电讯工业联盟/电子工业联盟)的ANSI/TIA/EIA-644标准,另一个是IEEE
1596.3标准。
1995年11月,以美国国家半导体公司为主推出了ANSI/TIA/EIA-644标准。1996年3
月,IEEE公布了IEEE 1596.3标准。这两个标准注重于对LVDS接口的电特性、互连与线路
端接等方面的规范,对于生产工艺、传输介质和供电电压等则没有明确。LVDS可采用CMOS、
GaAs或其他技术实现,其供电电压可以从+5V到+3.3V,甚至更低;其传输介质可以是PCB
连线,也可以是特制的电缆。标准推荐的最高数据传输速率是655Mbps,而理论上,在一个
无衰耗的传输线上,LVDS的最高传输速率可达1.923Gbps。
---- OpenLDI标准在笔记本电脑中得到了广泛的应用,绝大多数笔记本电脑的LCD显示屏
与主机板之间的连接接口都采用了OpenLDI标准。OpenLDI接口标准的基础是低压差分信号
(Low Voltage Differential Signaling,LVDS)接口,它具有高效率、低功耗、高速、低
成本、低杂波干扰、可支持较高分辨率等特点。LVDS接口在电信、通讯、消费类电子、汽
车、医疗仪器中广泛使用,并已经得到了AMP、3M、Samsung、Sharp、Silicon Graphics
等公司的支持。为了向台式机领域渗透,NS公司又专门针对LCD显示器推出了新的支持
OpenLDI标准的芯片组DS90C387和DS90CF388,新的芯片组支持从VGA(640480)~QXGA
(20481536)的分辨率。
---- DVI标准虽然还没有Open五行中属水的字
LDI标准那样声名显赫,应用也没有OpenLDI标准那样普遍。
但是由于有Intel、IBM、HP等大公司的加入,DVI的应用前景被普遍看好,一些数字型CRT
显示器、LCD显示器和数据投影机中已经采用了符合DVI标准的数字显示接口。
---- 目前大多数计算机与外部显示设备之间都是通过模拟VGA接口连接,计算机内部以数
字方式生成的显示图像信息,被显卡中的D/A(数字/模拟)转换器转变为R、G、B三原色
信号和行、场同步信号,信号通过电缆传输到显示设备中。对于模拟显示设备,如模拟C睡前故事成人
RT
显示器,信号被直接送到相应的解决电路,驱动控制显像管生成图像。而对于LCD、DLP等
数字显示设备,显示设备中需配置相应的A/D(模拟/数字)转换器,将模拟信号转变为数
字信号。在通过D/A和A/D2次转换后,不可避免地导致了一些图像细节的损失。
---- DVI标准由DDWG于1994年4月正式推出,它的基础是Silicon Image公司的PanalLink
接口技术,PanalLink接口技术采用的是最小化传输差分信号(Transition Minimized
Differential Signaling,S)作为基本电气连接。如附图所示,计算机中生成的图像信息
传送到显示解决单元(显卡)中,经解决并编码成数据信号,数据信号中包含了一些像素信
息、同步信息以及一些控制信息,信息通过3个通道输出。同时尚有一个通道用来传送使发
送和接受端同步的时钟信号。每一个通道中数据以差分信号方式传输,因此每一个通道需要
2根传输线。由于采用差分信号传输,数据发送和接受中辨认的都是压差信号,简单劳动
因此传输线
缆长度对信号影响较小,可以实现远距离的数据传输。在接受端对接受到的数办公室文员岗位职责
据进行解码,
并解决生成图像信息供数字显示设备显示。在DVI标准中对接口的物理方式、电气指标、时
钟方式、编码方式、传输方式、数据格式等进行了严格的定义和规范。对于数字显示设备,
由于没有D/A和A/D转换过程,避免了图像细节的丢失,从而保证了计算机生成图像的完整
再现。在DVI接口标准中还增长了一个热插拔监测信号,从而真正实现了即插即用
DVI标准一经推出立即得到了响应,不仅各图形芯片厂商纷纷推出了系列支持DVI标准的芯
片组,ViewSonic、Samsung等公司也相继推出了采用DVI标准接口的数字型CRT显示器和
LCD显示器。在新近上市的一些LCD和DLP数据投影机中我们也看到了DVI标准接口。随着
数字化时代的来临,DVI标准接口取代VGA接口成为显示设备事实标准接口指日可待。
1 LVDS介绍
LVDS(Low Voltage Differential Signaling)是一种低摆幅的差分信号技术,它使得信号
能在差分PCB线对或平衡电缆上以几百Mbps的速率传输,其低压幅和低电流驱动输出实现
了低噪声和低功耗。
几十年来,5V供电的使用简化了不同技术和厂商逻辑电路之间的接口。然而,随着集成电
路的发展和对更高数据速率的规定,低压供电成为急需。减少供电电压不仅减少了高密度集
成电路的功率消耗,并且减少了芯片内部的散热,有助于提高集成度。
减少供电电压和逻辑电压摆幅的一个极好例子是低压差分信号(LVDS)。LVDS物理接口使
用1.2V偏置提供400mV摆幅的信号(使用差分信号的因素是噪声以共模的方式在一对差分
线上耦合出现,并在接受器中相减从而可消除噪声)。LVDS驱动和接受器不依赖于特定的
供电电压,因此它很容易迁移到低压供电的系统中去,而性能不变。作为比较,ECL和PECL
技术依赖于供电电压,ECL规定负的供电电压,PECL参考正的供电电压总线上电压值(Vcc酉五行属什么
)
而定。而GLVDS是一种发展中的标准尚未拟定的新技术,使用500mV的供电电压可提供250mV
的信号摆幅。不同低压逻辑信号的差分电压摆幅示于图1。
LVDS在两个标准中定义。IEEE P1596.3(1996年3月通过),重要面向SCI(Scalable Coherent
Interface),定义了LVDS的电特性,还定义了SCI协议中包互换时的编码;
ANSI/EIA/EIA-644(1995年11月通过),重要定义了LVDS的电特性,并建议了655Mbps的
最大速率和1.823Gbps的无失真媒质上的理论极限速率。在两个标准中都指定了与物理媒质
无关的特性,这意味着只要媒质在指定的噪声边沿和歪斜容忍范围内发送信号到接受器,接
口都能正常工作。 LVDS具有许多优点:①终端适配容易;②功耗低;③具有fail-safe特
性保证可靠性;④低成本;⑤高速传送。这些特性使得LVDS在计算机、通信设备、消费电
子等方面得到了广泛应用。
图2给出了典型的LVDS接口,这是一种单工方两虎相争
式,必要时也可使用半双工、多点配置方式,
但一般在噪声较小、距离较短的情况下才合用。每个点到点连接的差分对由一个驱动器、互
连器和接受器组成。驱动器和接受器重要完毕TTL信号和LVDS信号之间的转换。互连器包
含电缆、PCB上差分导线对以及匹配电阻。LVDS驱动器由一个驱动差分线对的电流源组成?
通常电流为3.5mA),LVDS接受器具有很高的输入阻抗,因此驱动器输出的电流大部分都流
过100?的匹配电阻,并在接受器的输入端产生大约350mA 的电压。当驱动器翻转时,它
改变流经电阻的电流方向,因此产生有效的逻辑″1″和逻辑″0″状态。低摆幅驱动信号实
现了高速操作并减小了功率消耗,差分信号提供了适当噪声边沿和功率消耗大幅减少的低压
摆幅。功率的大幅减少允许在单个集成电路上集成多个接口驱动器和接受器。这提高了PCB
板的效能,减少了成本。
不管使用的LVDS传输媒质是PCB线对还是电缆,都必须采用措施防止信号在媒质终端发生
反射,同时减少电磁干扰。LVDS规定使用一个与媒质相匹配的终端电阻(10020),该
电阻终止了环流信号,应当将它尽也许靠近接受器输入端放置。LVDS驱动器能以超过
155.5Mbps的速度驱动双绞线对,距离超过10m。对速度的实际限制是:①送到驱动器的
TTL数据的速度;②媒质的带宽性能。通常在驱动器侧使用复用器、在接受器侧使用解复用
器来实现多个TTL信道和一个LVDS信道的复用转换,以提高信号速率,减少功耗。并减少
传输媒质和接口数,减少设备复杂性。
LVDS接受器可以承受至少1V的驱动器与接受器之间的地的电压变化。由于LVDS驱动器典
型的偏置电压为+1.2V,地的电压变化、驱动器偏置电压以及轻度耦合到的噪声之和,在接
受器的输入端相对于接受器的地是共模电压。这个共模范围是:+0.2V~+2.2V。建议接受器
的输入电压范围为:0V~+2.4V。
2 LVDS系统的设计
LVDS系统的设计规定设计者应具有超高速单板设计的经验并了解差分信号的理论。设计高
速差分板并不很困难,下面将简要介绍一下各注意点。
2.1 PCB板
(A)至少使用4层PCB板(从顶层到底层):LVDS信号层、地层、电源层、TTL信号层;
(B)使TTL信号和LVDS信号互相隔离,否则TTL也许会耦合到LVDS线上,最佳将TTL和
LVDS信号放在由电源/地层隔离的不同层上;
(C)使LVDS驱动十大品牌水管
器和接受器尽也许地靠近连接器的LVDS端;
(D)使用分布式的多个电容来旁路LVDS设备,表面贴电容靠近电源/地层管脚放置;
(E)电源层和地层应使用粗线,不要使用50布线规则;
(F)保持PCB地线层返回途径宽而短;
(G)应当使用运用地层返回铜线(gu9ound return wire)的电缆连接两个系统的地层;
(H) 使用多过孔(至少两个)连接到电源层(线)和地层(线),表面贴电容可以直接焊接到过
孔焊盘以减少线头。
2.2 板上导线
(A) 微波传输线(microstrip)和带状线(stripline)都有较好性能;
(B) 微波传输线的优点:一般有更高的差分阻抗、不需要额外的过孔;
(C) 带状线在信号间提供了更好的屏蔽。
2.3 差分线
(A)使用与传输媒质的差分阻抗和终端电阻相匹配的受控阻抗线,并且使差分线对离开集
成芯片后立刻尽也许地互相靠近(距离小于10mm),这样能减少反射并能保证耦合到的
噪声为共模噪声;
(B)使差分线对的长度互相匹配以减少信号扭曲,防止引起信号间的相位差而导致电磁辐
射;
(C)不要仅仅依赖自动布线功能,而应仔细修改以实现差分阻抗匹配并实现差分线的隔离;
(D)尽量减少过孔和其它会引起线路不连续性的因素;
(E)避免将导致阻值不连续性的90走线,使用圆弧或45折线来代替;
(F)在差分线对内,两条线之间的距离应尽也许短,以保持接受器的共模克制能力。在印
制板上,两条差分线之间的距离应尽也许保持一致,以避免差分阻抗的不连续性。
2.4 终端
(A)使用终端电阻实现对差分传输线的最大匹配,阻值一般在90~130之间,系统也需
要此终端电阻来产生正常工作的差分电压;
(B)最佳使用精度1~2%的表面贴电阻跨接在差分线上,必要时也可使用两个阻值各为50
的电阻,并在中间通过一个电容接地,以滤去共模噪声。
2.5 未使用的管脚
所有未使用的LVDS接受器输入管脚悬空,所有未使用的LVDS和TTL输出管脚悬樱花草花语
空,将未使
用的TTL发送/驱动器输入和控制/使能管脚接电源或地。
2.6 媒质(电缆和连接器)选择
(A)使用受控阻抗媒质,差分阻抗约为100,不会引入较大的阻抗不连续性;
(B)仅就减少噪声和提高信号质量而言,平衡电缆(如双绞线对)通常比非平衡电缆好;
(C)电缆长度小于0.5m时,大部分电缆都能有效工作,距离在0.5m~10m之间时,CAT
3(Categiory 3)双绞线对电缆效果好、便宜并且容易买到,距离大于10m并且规定高速率时,
建议使用CAT 5双绞线对。
2.7 在噪声环境中提高可靠性设计
LVDS 接受器在内部提供了可靠性线路,用以保护在接受器输入悬空、接受器输入短路以及
接受器输入匹配等情况下输出可靠。但是,当驱动器三态或者接受器上的电缆没有连接到驱
动器上时,它并没有提供在噪声环境中的可靠性保证。在此情况下,电缆就变成了浮动的天
线,假如电缆感应到的噪声超过LVDS内部可靠性线路的容限时,接受器就会开关或振荡。
假如此种情况发生,建议使用平衡或屏蔽电缆。此外,也可以外加电阻来提高噪声容限,如
图3所示。 图中R1、R3是可选的外接电阻,用来提高噪声容限,R2≈100。
当然,假如使用内嵌在芯片中的LVDS收发器,由于一般都有控制收发器是否工作的机制,
因而这种悬置不会影响系统。
3 应用实例
LVDS技术目前在高速系统中应用的非常广泛,本文给出一个简朴的例子来看一下具体的连
线方式。加拿大PMC公司的DSLAM(数字用户线接入模块)方案中,运用LVDS技术实现点
对点的单板互联,系统结构可扩展性非常好,实现了线卡上的高集成度,并且完全可以满足
业务分散、控制集中带来的大量业务数据和控制流通信的规定。
图4描述了该系统线卡与线卡之间、线卡与背板之间的连线情形,使用的都是单工方式,所
以需要两对线来实现双向通信。图中示出了三种不同连接方式,从上到下分别为:存在相应
连接芯片;跨机架时实现终端匹配;同层机框时实现终端匹配。在接受端串接一个变压器可
以减小干扰并避免LVDS驱动器和接受器地电位差较大的影响。
LVDS接口定义。