向量点乘(内积)和叉
乘(外积、向量积)概
念及几何意义解读
精品文档
概念
向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数
组;
向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两黄瓜片汤
个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。
点乘公式
对于向量a和向量b:
a和b的点积公式为:
要求一维向量a和向量b的行列数相同。
点乘几何意义
点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在
向量方向上的投影,有公式:
推导过程如下,首先看一下向量组成:
定义向量:
收集于网络,如有侵权请联系管理员删除
b向量在a
精品文档
根据三角形余弦定理有:
根据关系c=a-b(a、b、c均为向量)有:
即:
向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角:
根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这
两个向量是否是同一方向,是否茶与书法 正交(也就是垂直)等方向关系,具体对应关系为:
ab>0
ab=0
ab<0
方向基本相同,夹角在0到90之间
正交,相互垂直
方向基好看的小说完本推荐 本相反,夹角大学几月开学 在90到180之间
叉乘公式
两个向量的小狗图画 叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向乡色酒 量而不是
一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。
对于向量a和向量b:
a和b的叉乘公式为:
收集于网络,如有侵权请联系管理员删除
精品文档
其中:
根据i、j、k间关系,有:
叉乘几何意义
在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向
量,该向量垂直于a和b向量构成的平面。
在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个
垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:
在二维空间中,叉乘还有另外一个几何意义就是:aXb等于由向量a和向量b构
成的平行四边形的面积。
收集于网络,如有侵权请联系管理员删除
本文发布于:2023-04-16 08:21:38,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/82/499351.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |