非线性最小二乘法Levenberg-Marquardt-method
Levenberg-MarquardtMethod(麦夸尔特法)
Levenberg-MarquardtisapopularalternativetotheGauss-Newtonmethodoffindingtheminimumofa
functionthatisasumofsquaresofnonlinea折纸作品 rfunctions,
LettheJacobianofbedenoted,thentheLevenberg-Marquardtmethodarchesinthe
directiongivenbythesolutiontotheequations
hodhasthenicepropertythat,for
somescalarrelatedto,thevector政府首脑 isthesolutionoftheconstrainedsubproblemofminimizing
subjectto(Gilletal.1981,p.136).
ThemethodisudbythecommandFindMinimum[f,x,x0]whengiventheMethod->LevenbergMarquardtoption.
SEEALSO:Minimum,OptimizationREFERENCES:
Bates,ts,k:Wiley,1988.
Gill,P.R.;Murray,W.;andWright,M.H."TheLevenberg-
MarquardtMethod.":AcademicPress,pp.136-137,1981.
Levenberg,K."AMethodfortheSolutionofCertain
ProblemsinLeastSquares.".2,164-168,1944.
Marquardt,D."AnAlgorithmforLeast-SquaresEstimationofNonlinearParameters.".11,431-441,1963.
Levenberg–Marquardtalgorithm
FromWikipedia,thefreeencyclopediaJumpto:navigation,arch
Inmathematicsandcomputing,theLevenberg–Marquardt
algorithm(LMA)[1]providesanumericalsolutiontotheproblem
ofminimizingafunction,generallynonlinear,overaspaceof
inimizationproblemsari
especiallyinleastsquarescurvefittingandnonlinearprogramming.
TheLMAinterpolatesbetweentheGauss–Newtonalgorithm
(GNA)ismore
robustthantheGNA,whichmeansthatinmanycasitfindsa
l-
behavedfunctionsandreasonablestartingparameters,theL梦见被人杀 MA
alsobeviewed
asGauss–Newtonusingatrustregionapproach.
TheLMAisave恼怒的反义词 rypopularcurve-fittingalgorithmudin
r,theLMAfindsonlyalocalminimum,nota
globalminimum.
Contents[hide]
1CaveatEmptor
2Th如今的近义词 eproblem3Thesolution
o3.1Choiceofdampingparameter
4Example
5Notes
6Seealso
7References
8Externallinks
o8.1Descriptions
o8.2Implementations[edit]CaveatEmptor
Oneimportantlimitationthatisve工作评语 ryoftenover-lookedis
thatitonlyoptimisforresidualerrorsinthedependantvariable
(y).Ittherebyimplicitlyassumesthatanyerrorsinthe
independentvariablearezerooratleastratioofthetwoisso
notadefect,itisintentional,but
itmustbetakenintoaccountwhendecidingwhethertouthis
hismaybesuitableincontexto千足金和万足金的区别 fa
controlledexperimenttherearemanysituationswherethis
situationithernon-least
squaresmethodsshouldbeudortheleast-squaresfitshould
bedoneinproportiontotherelativeerrorsinthetwovariables,
notsimplythevertical"y"gtorecognithiscanlead
toafitwhichissignificantlyincorrectandfundamentallywrong.
yormaynotbeobvioustotheeye.
MicroSoftExcel'schartoffersatrendfitthathasthis
ftenfallintothistrap
assumingthefitiscorrectlycalculatedforallsituations.
O钢琴级别怎么划分 penOfficespreadsheetcopiedthisfeatureandprentsthesameproblem.
[edit]Theproblem
TheprimaryapplicationoftheLevenberg–Marquardt
algorithmisintheleastsquarescurvefittingproblem:givenat
ofmempiricaldatumpairsofindependentanddependent
variables,(xi,yi),optimizetheparametersofthemodelcurve
f(x,)sothatthesumofthesquaresofthedeviations
becomesminimal.[edit]Thesolution
Likeothernumericminimizationalgorithms,theLevenberg–
ta
minimization,theurhastoprovideaninitialguessforthe
parametervector,.Inmanycas,anuninformedstandard
guesslikeT=(1,1,...,1)willworkfine;
inothercas,thealgorithmconvergesonlyiftheinitialguessisalreadysomewhatclotothefinalsolution.
本文发布于:2023-04-16 03:48:24,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/82/499154.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |