初中数学教学设计与反思5篇

更新时间:2024-03-23 16:42:35 阅读: 评论:0

2024年3月23日发(作者:米汉雯)

初中数学教学设计与反思5篇

初中数学教学设计与反思1

一、教学目标:

1、知道一次函数与正比例函数的定义.

2、理解掌握一次函数的图象的特征和相关的性质;

3、弄清一次函数与正比例函数的区别与联系.

4、掌握直线的*移法则简单应用.

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的*移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2. 一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特

例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

*行的一条直线。

基础训练:

1. 写出一个图象经过点(1,- 3)的函数解析式为: 。

2.直线y = - 2X - 2 不经过第 象限,y随x的增大而。

3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4.已知正比例函数 y =(3k-1)x,,若y随

x的增大而增大,则k是: 。

5、过点(0,2)且与直线y=3__行的直线是: 。

6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

7、若y-2与__2成正比例,当x=-2时,y=4,则x= 时,y = -4。

8、直线y=- 5x+b与直线y=__3都交y轴上同一点,则b的值为 。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解

析式。

四、教学反思:

教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问

题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

初中数学教学设计与反思2

一、明确每一堂课的教学目标

教学目标是教学所要达到的具体标准,教学目标的明确与否直接关系到整堂课教学的成败。因此,教师首先要有目标意识,结合教学大纲,认真研究高中数学这门课程的学科特点,洞悉章节之间的内在联系,明确该课程总的教学任务和目标,在备课之初就要设定好每一节课要达到的分目标,将每一节课的局部跟整体联系起来,让学生有融会贯通、豁然开朗之感。一般来说,分目标的确定不应只是停留在要学生掌握多少概念定理、基础知识上,更为关键的是要锻炼学生的数学思维,增强他们将数学知识应用到生活实践的能力。相对于传统的以知识传授为目标,新的目标的确定势必需要教师付出更多的努力。我们必须加强业务学习,提高自身的综合素质,才有可能做好一个合格的高中数学教师,才能谈及教学质量提升的问题。

二、进行科学合理的教学设计

在明确了每一节课的教学目标之后,就要着手进行具体的教学设计。教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划,一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计是提高学习者获得知识、技能的效率和兴趣的技术过程,是教育技术的组成部分。它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。它以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解

决怎样教的问题。因此,我们可以看到,教学设计的好坏对于教学目标的达成与否起着至关重要的作用,要想做出科学合理、有条不紊的教学设计,我们需要虚心学习同行的宝贵经验,反复修正原有的教学设计,以高标准严格要求自己,力求达到日臻完善的程度。

三、激发学生的学习热情,生动开展课堂教学

学生是学习的主人,要为自己的学习负责任,教师要做好陪伴和引导的角色。高中数学课程难度不断加大,学生的基础知识掌握稍有脱节,就有可能学得吃力,导致兴趣下降,动力不足。因此,教师在教学中要注意观察学生的反应,通过提问等方式,及时收集学生的反馈,对教学内容灵活做出适当调整。课堂上准备的习题也要难易适度,使学生能够循序渐进地完成教学目标,体验到学会的成就感,建立对本门课程的自信心。高中数学教师也要注意教学语言的锤炼,力求精确生动,可以穿插一些相关的生活趣事,生动活泼地将数学知识与生活的联系呈现在学生的面前。

四、创设愉悦宽松的教学氛围

学生是学习的主人,首先是学习需要、学习情感的主人,然后才是掌握知识的主人。长期以来,造成教学被动局面的一个重要原因就是教师忽视或没有重视去营造一种和谐愉悦的课堂教学氛围和培养学生良好的学习兴趣。传统的教学重理智控制,轻情感沟通,忽视情感因素的教育价值。而现代教学则是把师生情

感的和谐与融洽作为其执意追求的一种心理环境,着力从理性与情感统一的高度来驾御和实施教学活动。心理学研究表明,适度的压力最有助于个体各方面能力的发挥,高中数学的学习也不例外。课堂任务繁重,压力过大,不仅会降低学生学习的热情,而且会大大降低学习效果。因此,教师要注意营造愉悦宽松的教学氛围。精心设计教学环节,以幽默智慧的教学语言让学生轻松掌握每一节课的精髓,做到对知识点的举一反三,做到将知识与生活实际相联。

五、建立亲切舒适的师生关系

师生关系是指教师和学生在教育、教学过程中结成的相互关系,包括彼此所处的地位、作用和相互对待的态度等。师生关系既受教育活动规律的制约,又是一定历史阶段社会关系的反映。良好的师生关系是提高学校教育质量的保证,也是社会精神文明的重要方面。新型师生关系应该是教师和学生在人格上是*等的、在交互活动中是民主的、在相处的氛围上是和谐的。师生关系是教育活动过程中最基本、最重要的关系。教师应时刻提醒自己身为学生的榜样,无论是在工作还是生活中都要以《中小学教师职业道德规范》要求自己,发自内心地热爱祖国,遵纪守法,爱岗敬业,*等尊重每一位学生,不以分数作为评价学生的标准,坚守高尚情操,知荣明耻,严于律己,以身作则,崇尚科学精神,树立终身学习理念,潜心钻研业务,勇于探索创新,不断提高专业素养和教育教学水*,努力做受学生爱戴的教师。因此,高中数学

课堂教学质量的提高是一项说难也不难的任务,说它难是因为无论是钻研教学目标和内容、进行科学创新的教学设计,还是做好生动主动的课堂教学、营造愉悦宽松的教学氛围和建立和谐的师生关系,每一环都需要教师付出艰辛的努力和高尚无私的爱,实属不易。说它不难,是因为这些工作的确就是每一位教师每天都在默默做着的,只要我们忠于职守,踏实奉献,就能收获课堂教学质量的不断提高,收获桃李满天下的累累硕果。

初中数学教学设计与反思3

现代教学论研究指出,从本质上讲,学生学习的根本原因是问题。在数学课堂教学中,教师可根据不同的教学内容,围绕不同的教学目标,设计出符合学生实际的教学问题,围绕所设计的问题开展教学活动。这样,在课堂教学环节中,问题该怎样设计?围绕问题该怎样进行教学,才能使教学效率得以提高?这是摆在我们面前急需解决的问题。

本文将结合自己的教学实践,就问题设计的策略及反思等方面谈谈自己的看法。

一、注重问题情境的创设

著名数学家费赖登塔尔认为:“数学源于现实又寓于现实,数学教学应从学生所接触的客观实际中提出问题,然后升华为数学概念、运算法则或数学思想。”这一观念既反映了数学的本质,同时说明了在数学课堂教学中创设问题情境的重要性。比如,在《有理数的加法》一节的教学导入时,我首先出示了一周来本班的积

分统计表(表中的得分用正数表示,失分用负数表示,)让学生观察:

星期 一 二 三 四 五 六 合计

积分 +3 -2 -4 -2 +2 +4

然后提出问题:“谁能帮我们班算出这一周的总积分呢?”结果我发现大多数同学能用“抵消”的方法统计出这一周本班的总积分。然后我出了一道算式题:“(+3)+(-2)+(-4)+(-2)=?”发现学生不知道该怎样算。当学生产生这样的认知冲突时我便引入了本节课要学习的内容,最后我用表中的数据分成了几种类型,如正数加正数、负数加负数、正数加负数等,展开新知学习,教学效果较以前有明显改观。

本节课成功之处在于:(1)导入的情境问题贴近学生的现实,调动了学生的积极性。(2)情境问题为后面的教学埋下了伏笔,引发了学生的认知冲突。当然,情境问题的创设不当,会直接影响教学。比如,在《函数》一节的教学时,我用游乐园中的摩天轮引入,当我提出问题:“同学们,当你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?”我发现学生几乎没有反应,只是偶尔听到:“摩天轮?”“很危险。”本来是一个很典型的函数问题,只因为农村学生对该情境的认识模糊,一时没有进入到虚拟情境中来,导致课堂开端出现“僵局”,也影响了后面的教学工作的胜利开展。

2、教学重点、难点处的问题设计

初中数学课堂教学中重点与难点的处理将直接影响教学效果。通过设计好的问题串可以强化重点与突破难点。例如,《结识抛物线》一节的教学重点就是做二次函数y=x2的图像并根据图像认识和理解函数的性质。而作图过程又是一个难点问题,要从所画的图像中发现并归纳性质,首先得画出较准确的函数图像。在学生画图像的过程中,我抓住学生的几种错误画法提出了三个问题让学生讨论交流:(1)根据你画的图像,给自变量x任取一个值,函数y有唯一的.值与它对应吗?(2)自变量x的范围是什么?(3)在0 1的范围内,给x再取几个值,相应地算出y的值,进行描点、连线,详细观察是*滑曲线还是折线段。学生通过对前两个问题的思考和解决,既复习巩固了函数的概念又进一步理解了图像的无限延伸性。对问题(3),部分同学经过对x的小范围内的取值、描点与连线之后观察到了所画的图像是曲线型的,但是还有部分学生就是体验不到这种形状。在这种情况下,我用计算机演示,当所描出的点比较密集时所连的线是曲线而不是直线段,这样才消除了学生的一些错误认识。在随后的观察图像归纳性质的探索与交流活动中,学生乐于探索,主动交流,积极发表自己的想法,根据图像归纳出了好几条性质。这样,不但使重点得以突出、难点得到突破,而且发展了学生的思维。

3、例题或课堂练习中的问题设计

例题教学具有及时巩固知识和灵活运用知识的双重功能,随

堂练习是检查学生的数学学习效果和培养学生思维的有效手段之一。数学课堂教学中,教师通过优选例题,精心设计层次分明的练习,能够让学生以积极的态度去思考并解决问题,获得问题解决的成就感和快乐感。例如笔者在《反比例函数的图像与性质》一节的教学中设计了一道这样的问题:已知A(-2,y1)、B(-1,y2)、C(2,y3)三点都在反比例函数y=k/x(k0)图像上,(1)比较y1、y2、y3的大小关系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三点也在反比例函数y=k/x(k0)的图像上,其中a0、c0判断y1、y2、y3的大小关系。教学中我发现多数学生对问题(1)采用了直接代入计算的方法得到结果,对问题(2)显然用代入法难以得到结果,这时,我让学生小组讨论来解决。经过讨论后,学生A回答:“因为k0时,反比例函数y随x的增大而减小,而a y3。”学生B回答:“我们组用特殊值检验得出y2

0,y30,所以y3y1y2。”学生C回答:“我们组根据反比例函数的图像和性质得到:当k0时,在每个象限内,函数y的值随自变量x的增大而减小,由此可得y3y1y2。”经过对以上不同做法的比较和鉴别,学生对反比例函数图像的性质中“在每一个象限内”这一条件有了彻底的理解。可见,在数学课堂教学中,教师精心设计例题或练习问题,使学生通过对问题的解决,既巩固了知识,又培养了运用知识解决实际问题的能力,体验到了解决问题后的快乐感和成就感。

4、在学习反思中的问题设计

初中学生学习数学的方法相对欠缺,学生“重结论,轻过程”的现象较普遍,对学习结果的反思意识淡薄,自我评价不彻底,做错的题目一错再错。作为教师,在*时的教学中要注重引导,彻底分析错因,让学生在错题中有反思的机会。例如,在一元一次方程的教学中,我发现学生解含有分母的方程时很容易出错,针对学生做错的题目,我设计了如的表格:

通过引导学生对错因彻底分析与校正,学生明白了产生错误的真正原因是什么,认识到了自己的不足。然后我出了几道解方程的练习,结果发现,学生确实重视了错误,效果明显有所好转。

总之,在数学教学中,教学问题的设计确实是一种学问,是一种艺术。要让学生在实实在在的问题情境中去亲历体验,在对问题的分析、探索与交流的过程中主动思考,与人分享成果,来体验成功的快乐,增强他们的自信心。

初中数学教学设计与反思4

教材分析:

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:

1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认

识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与*方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:

1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,

使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

教学过程:

一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。

问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?

①二次项系数a是否为零,决定着方程是否为二次方程;

②当a≠0时,b=0,a、c异号,方程两根互为相反数;

③当a≠0时,△=b-4ac可判定根的情况;

④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。

⑤当a≠0,c=0时,方程必有一根为0。

教学反思:

1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力

3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函

数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

初中数学教学设计与反思5

现代教学论研究指出,从本质上讲,学生学习的根本原因是问题。在数学课堂教学中,教师可根据不同的教学内容,围绕不同的教学目标,设计出符合学生实际的教学问题,围绕所设计的问题开展教学活动。这样,在课堂教学环节中,问题该怎样设计?围绕问题该怎样进行教学,才能使教学效率得以提高?这是摆在我们面前急需解决的问题。

本文将结合自己的教学实践,就问题设计的策略及反思等方面谈谈自己的看法。

一、注重问题情境的创设

著名数学家费赖登塔尔认为:“数学源于现实又寓于现实,数学教学应从学生所接触的客观实际中提出问题,然后升华为数学概念、运算法则或数学思想。”这一观念既反映了数学的本质,同时说明了在数学课堂教学中创设问题情境的重要性。比如,在《有理数的加法》一节的教学导入时,我首先出示了一周来本班的积分统计表(表中的得分用正数表示,失分用负数表示,)让学生观察:

星期 一 二 三 四 五 六 合计

积分 +3 -2 -4 -2 +2 +4

然后提出问题:“谁能帮我们班算出这一周的总积分呢?”结果我发现大多数同学能用“抵消”的方法统计出这一周本班的总积分。然后我出了一道算式题:“(+3)+(-2)+(-4)+(-2)=?”发现学生不知道该怎样算。当学生产生这样的认知冲突时我便引入了本节课要学习的内容,最后我用表中的数据分成了几种类型,如正数加正数、负数加负数、正数加负数等,展开新知学习,教学效果较以前有明显改观。

本节课成功之处在于:(1)导入的情境问题贴近学生的现实,调动了学生的积极性。(2)情境问题为后面的教学埋下了伏笔,引发了学生的认知冲突。当然,情境问题的创设不当,会直接影响教学。比如,在《函数》一节的教学时,我用游乐园中的摩天轮引入,当我提出问题:“同学们,当你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?”我发现学生几乎没有反应,只是偶尔听到:“摩天轮?”“很危险。”本来是一个很典型的函数问题,只因为农村学生对该情境的认识模糊,一时没有进入到虚拟情境中来,导致课堂开端出现“僵局”,也影响了后面的教学工作的胜利开展。

2、教学重点、难点处的问题设计

初中数学课堂教学中重点与难点的处理将直接影响教学效

果。通过设计好的问题串可以强化重点与突破难点。例如,《结识抛物线》一节的教学重点就是做二次函数y=x2的图像并根据图像认识和理解函数的性质。而作图过程又是一个难点问题,要从所画的图像中发现并归纳性质,首先得画出较准确的函数图像。在学生画图像的过程中,我抓住学生的几种错误画法提出了三个问题让学生讨论交流:(1)根据你画的图像,给自变量x任取一个值,函数y有唯一的值与它对应吗?(2)自变量x的范围是什么?(3)在0 1的范围内,给x再取几个值,相应地算出y的值,进行描点、连线,详细观察是*滑曲线还是折线段。学生通过对前两个问题的思考和解决,既复习巩固了函数的概念又进一步理解了图像的无限延伸性。对问题(3),部分同学经过对x的小范围内的取值、描点与连线之后观察到了所画的图像是曲线型的,但是还有部分学生就是体验不到这种形状。在这种情况下,我用计算机演示,当所描出的点比较密集时所连的线是曲线而不是直线段,这样才消除了学生的一些错误认识。在随后的观察图像归纳性质的探索与交流活动中,学生乐于探索,主动交流,积极发表自己的想法,根据图像归纳出了好几条性质。这样,不但使重点得以突出、难点得到突破,而且发展了学生的思维。

3、例题或课堂练习中的问题设计

例题教学具有及时巩固知识和灵活运用知识的双重功能,随堂练习是检查学生的数学学习效果和培养学生思维的有效手段之一。数学课堂教学中,教师通过优选例题,精心设计层次分明

的练习,能够让学生以积极的态度去思考并解决问题,获得问题解决的成就感和快乐感。例如笔者在《反比例函数的图像与性质》一节的教学中设计了一道这样的问题:已知A(-2,y1)、B(-1,y2)、C(2,y3)三点都在反比例函数y=k/x(k0)图像上,(1)比较y1、y2、y3的大小关系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三点也在反比例函数y=k/x(k0)的图像上,其中a0、c0判断y1、y2、y3的大小关系。教学中我发现多数学生对问题(1)采用了直接代入计算的方法得到结果,对问题(2)显然用代入法难以得到结果,这时,我让学生小组讨论来解决。经过讨论后,学生A回答:“因为k0时,反比例函数y随x的增大而减小,而a

y3。”学生B回答:“我们组用特殊值检验得出y2

0,y30,所以y3y1y2。”学生C回答:“我们组根据反比例函数的图像和性质得到:当k0时,在每个象限内,函数y的值随自变量x的增大而减小,由此可得y3y1y2。”经过对以上不同做法的比较和鉴别,学生对反比例函数图像的性质中“在每一个象限内”这一条件有了彻底的理解。可见,在数学课堂教学中,教师精心设计例题或练习问题,使学生通过对问题的解决,既巩固了知识,又培养了运用知识解决实际问题的能力,体验到了解决问题后的快乐感和成就感。

4、在学习反思中的问题设计

初中学生学习数学的方法相对欠缺,学生“重结论,轻过程”

的现象较普遍,对学习结果的反思意识淡薄,自我评价不彻底,做错的题目一错再错。作为教师,在*时的教学中要注重引导,彻底分析错因,让学生在错题中有反思的机会。例如,在一元一次方程的教学中,我发现学生解含有分母的方程时很容易出错,针对学生做错的题目,我设计了如的表格:

通过引导学生对错因彻底分析与校正,学生明白了产生错误的真正原因是什么,认识到了自己的不足。然后我出了几道解方程的练习,结果发现,学生确实重视了错误,效果明显有所好转。

总之,在数学教学中,教学问题的设计确实是一种学问,是一种艺术。要让学生在实实在在的问题情境中去亲历体验,在对问题的分析、探索与交流的过程中主动思考,与人分享成果,来体验成功的快乐,增强他们的自信心。

本文发布于:2024-03-23 16:42:35,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/1244704.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:学生   教学   问题
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图