2001年国际数学奥林匹克试题

更新时间:2023-08-01 16:10:53 阅读: 评论:0

Washington, DC, United States of America河南豆
July 8–9, 2001
Problems
Each problem is worth ven points.
Problem 1
Let ABC  be an acute-angled triangle with circumcentre O . Let P  on BC  be the foot of the altitude from A .
Suppo that  BCA  ABC  30 .
Prove that  CAB  COP  90 .
Problem 2
Prove that
a                                                      a 2 8
b  c
b                                                      b 2 8
网络教育培训c  a  c                                                        c 2 8 a  b  1for all positive real numbers a ,b  an
d c .
Problem 3
Twenty-one girls and twenty-one boys took part in a mathematical contest.
•  Each contestant solved at most six problems.
•  For each girl and each boy, at least one problem was solved by both of them.
Prove that there was a problem that was solved by at least three girls and at least three boys.
金属英文Problem 4
关于中秋的画
Let n  be an odd integer greater than 1, and let k 1,k 2,…,k n  be given integers. For each of the n  permutations
a  a 1,a 2,…,a n  of 1,2,…,n , let
S  a    i  1
n
k i  a i .
offorProve that there are two permutations b  and c , b  c , such that n  is a divisor of S  b  S  c  .
2IMO 2001 Competition Problems陶笛怎么吹
Problem 5
In a triangle ABC, let AP bict  BAC, with P on BC, and let BQ bict  ABC, with Q on CA.
It is known that  BAC 60  and that AB BP AQ QB.
What are the possible angles of triangle ABC?
Problem 6
Let a,b,c,d be integers with a b c d 0. Suppo that
古运河畔a c
b d  b d a美女黑
c  b
d a c .
Prove that a b c d is not prime.

本文发布于:2023-08-01 16:10:53,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/1125868.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:网络   教育   培训
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图