金属_非金属掺杂碳量子点的制备及其应用

更新时间:2023-07-31 14:06:25 阅读: 评论:0

摘要
碳量子点(CQDs)作为一种新型的纳米碳材料,具有优异的光致发光性、良好的水溶性、生物低毒性以及光诱导电荷转移等性质,在光电催化、生物传感、重金属离子检测、锂离子电池等领域引起广泛关注。本研究基于低共熔溶剂(DESs)采用水热法和燃烧法,制备了金属掺杂CQDs(M@CQDs)和非金属掺杂CQDs,并考察了Cu@CQDs的光催化特性。研究内容如下:
1)分别采用水热法和燃烧法,以十二烷基二甲基甜菜碱和D-果糖合成的DES 作为碳源,硅酸四乙酯作为硅源,制备Si@CQDs。当DES物质的量配比为1:1,水热温度为200℃,反应时间为12h时,制备出的Si@CQDs分散性好,粒径均一,尺寸约为5nm,表面含有C-N键和C=O键。以燃烧法合成的Si@CQDs发生簇集现象,粒径均在2.5nm左右。
父亲上女儿2)以丙三醇、氯化胆碱、二水合氯化铜(六水合氯化钴、氯化锌)作为原料合成的金属配体DESs作为前驱物,采用水热法和燃烧法制备三种M@CQDs,分别为Cu@CQDs、Co@CQDs、Zn@CQDs。在Cu@CQDs的制备过程中,当原料物质的量配比为5:1:1,水热温度为220℃,时间24h时,制备的Cu@CQDs荧光性能较好,在356nm紫外照射下发蓝绿色光,且具有反-斯托克斯效应。采用燃烧法制备的Cu@CQDs,当制备温度为300℃,时间3h时,铜掺杂率较高,粒径在2~5nm之间,具有良好的电子运输能力。
3)以燃烧法制备的Cu@CQDs作为光催化剂。Cu@CQDs表面富含亲水性官能团和纳米氧化亚铜,赋予其优良的光催化性能。对于原料物质的量配比为2~4:1:1制备的Cu@CQDsⅡ~Ⅳ,在可见光照射下降解罗丹明-B(RhB)水溶液,研究其光催化特性。结果表明Cu@CQDs表现出优异的光催化性能,对于RhB降解率达到95%。
关键词低共熔溶剂;水热法;燃烧法;掺杂性碳量子点;光催化;罗丹明-B
芭蕉叶I
Abstract
As a new type of nano carbon material, carbon quantum dots (CQDs) show excellent photoluminescence, good water solubility, low biological toxicity, and photoinduced charge transfer. The properties have attracted extensive attention in the fields of photocatalysis, bionsor, heavy metal ion detection, and lithium ion battery. Bad on deep eutectic solvents (DESs), two sorts of metal/non-metal doped CQDs were prepared by using hydrothermal method and combustion method. The photocatalytic performance ********************************************************:
1)The silicon doped carbon quantum dots (Si@CQDs) were compound by hydrothermal method and
combustion method respectively. The DES was ud as carbon source which was synthesized by lauryl betaine and D-fructo. And tetraethyl silicate was ud as silicon source. The preparation effect of Si@CQDs was better with the molar ratio of 1:1. The corresponding hydrothermal temperature and time were 200℃ and 12h. It was found that the as-prepared Si@CQDs showed uniform size and good dispersion with average particle size of 5nm. The surface of Si@CQDs contained C-N and C=O functional groups. Then the Si@CQDs was synthesized by the combustion method. The average particle size of as-prepared Si@CQDs was 2.5nm, which aggregated nanoclusters in aqueous solution.
2)Three kinds of metal doped carbon quantum dots (M-CQDs) were prepared by hydrothermal method and combustion method. They were Cu@CQDs, Co@CQDs, and Zn@CQDs, respectively. To prepare Cu@CQDs, the metal ligand DES was synthesized by glycerol, choline chloride and copper dichloride as precursors. The molar ratio of raw materials was 5:1:1. When the hydrothermal temperature and time were t as 220℃ and 24h, the Cu@CQDs exhibited better fluorescence performance, anti-Stokes effect, and emit blue-green photoluminescence under UV excitation. The Cu@CQDs prepared by the combustion method possd higher copper doping rate when the preparation temperature and time were 300°C and 3h, respectively. The range of particle size distribution was from
2 to 5nm with good electron transport function.
地理常识
3)The as-prepared Cu@CQDs by combustion method were ud as photocatalysis. The surface of Cu@CQDs contained hydrophilic functional groups and nano-copper compounds, which showed excellent photocatalytic properties. Rhodamine-B (RhB) aqueous solution was irradiated under visible light, and photocatalytic performance of
III
Cu@CQDsⅡ~Ⅳwas studied. The results revealed that Cu@CQDs performed excellent photocatalytic performance with the RhB degradation rate of 95%.
公文体Key words Deep eutectic solvents;Hydrothermal method;Combustion method;Doped carbon quantum dots;Photocatalysis;Rhodamine B
IV
目录
摘要.................................................................................................. I Abstract ............................................................................................... I II 第1章绪论. (1)
1.1 引言 (1)
1.2 碳纳米材料 (1)
1.2.1 碳纳米材料概要 (1)感谢信任
1.2.2 碳纳米材料表征手段 (1)
1.3 碳量子点简介 (2)
1.3.1 碳量子点概要 (2)
1.3.2 碳量子点性质 (2)
1.3.3 碳量子点的制备方法 (3)
1.4 碳量子点的应用 (3)
1.5 掺杂性碳量子点的合成及应用 (4)
1.6 研究内容 (5)
第2章硅掺杂碳量子点的研究 (7)
2.1 实验材料与方法 (7)
2.1.1 试剂与仪器 (7)
2.1.2 低共熔溶剂的合成 (8)
2.1.3 硅掺杂碳量子点的制备 (8)
2.1.4 表征方法 (9)
2.2 实验结果与讨论 (10)
2.2.1 低共熔溶剂的性能表征 (10)
2.2.2 水热法制备硅掺杂碳量子点 (14)
2.2.3 燃烧法制备硅掺杂碳量子点 (19)
2.3 本章小结 (19)
3月4号
第3章金属掺杂碳量子点的研究 (21)
3.1 实验材料与方法 (21)
3.1.1 试剂与仪器 (21)
3.1.2 金属配体低共熔溶剂的合成 (22)
3.1.3 水热法制备金属掺杂碳量子点 (22)
3.1.4 燃烧法制备金属掺杂碳量子点 (22)
V
3.2 实验结果与讨论 (23)
3.2.1 金属配体低共熔溶剂性能表征 (23)
3.2.2 金属掺杂碳量子点的结构表征 (25)
3.2.3 铜掺杂碳量子点的光学性能表征 (27)
3.2.4 制备方法对比 (32)
3.3 本章小结 (32)
第4章铜掺杂碳量子点的光催化性能研究 (33)
冰箱温度如何调节
4.1 实验材料与方法 (33)
4.1.1 试剂与仪器 (33)
4.1.2 吸附性能实验 (34)
4.1.3 光催化实验 (34)
4.2 实验结果与讨论 (34)
4.2.1 铜掺杂碳量子点的吸附性能研究 (34)
4.2.2 铜掺杂碳量子点的光催化性能研究 (36)
4.3 本章小结 (41)
结论 (43)
参考文献 (45)
攻读硕士学位期间所发表的论文和专利 (51)
党员生活致谢 (53)
VI

本文发布于:2023-07-31 14:06:25,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/1124803.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:量子   制备   掺杂
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图