1.文件中数据格式
label index1:value1 index2:value2 ...圣诞活动主题
Label在分类中表示类别标识,在预测中表示对应的目标值
Index表示特征的序号,一般从1开始,依次增大
Value表示每个特征的值
例如:
3 1:0.122000 2:0.792000
3 1:0.144000 2:0.750000
3 1:0.194000 2:0.658000
3 1:0.244000 2:0.540000
3 1:0.328000 2:0.404000
3 1:0.402000 2:0.356000
3 1:0.490000 2:0.384000
3 1:0.548000 2:0.436000
数据文件准备好后,可以用一个python程序检查格式是否正确,这个程序在下载的libsvm文件夹的子文件夹tools下,叫checkdata.py,用法:在windows命令行中先移动到checkdata.py所在文件夹下,输入:checkdata.py 你要检查的文件完整路径(包含文件名)
回车后会提示是否正确。
2.对数据进行归一化。
该过程要用到libsvm软件包中的
Svm-scale用法:
用法:svmscale [-l lower] [-u upper] [-y y_lower y_upper] [-s save_filename] [-r restore_filename] filename (缺省值: lower = -1,upper = 1,没有对y进行缩放)
其中, -l:数据下限标记;lower:缩放后数据下限;
登岳阳楼古诗 -u:数据上限标记;upper:缩放后数据上限;
-y:是否对目标值同时进行缩放;y_lower为下限值,y_upper为上限值;(回归需要对目标进行缩放,因此该参数可以设定为 –y -1 1 )
-s save_filename:表示将缩放的规则保存为文件save_filename;
-r restore_filename我最喜欢的书作文:表示将缩放规则文件restore_filename载入后按此缩放;
filename:待缩放的数据文件(要求满足前面所述的格式)。
数据集的缩放结果在此情况下通过DOS窗口输出,当然也可以通过DOS的文件重定向符号“>”将结果另存为指定的文件。该文件中的参数可用于最后面对目标值的反归一化。反归一化的公式为:
(Value-y_lower)*(max-min)/(y_upper - y_lower)+min
其中value为归一化后的值,max,min分别是归一化之前所有目标值的最大值和最小值,其他参数与前面介绍的相同。
送闺蜜什么花注意: 夸人好看将训练数据集与测试数据集放在同一个文本文件中一起归一化,然后再将归一化结果分成训练集和测试集。
3.训练数据,生成模型。
用法: svmtrain [options] training_t_file [model_file]
其中, options(操作参数):可用的选项即表示的涵义如下所示
-s svm类型:设置SVM 类型,默认值为0,可选类型有(对于回归只能选3或4):
0 -- C- SVC 1 -- n - SVC 2 -- one-class-SVM 3 -- e - SVR 4 -- n - SVR
-t 核函数类型:设置核函数类型,默认值为2,可选类型有:
0 -- 线性核:u'*v
1 -- 多项式核: (g*u'*v+ coef 0)deg ree
2 -- RBF 核:e( u v 2) g - 九十大寿祝寿词
关于认真的名言 3 -- sigmoid 核:tanh(g*u'*v+ coef 0)
环境监测技术