半导体物理与器件第四课后习题答案

更新时间:2023-07-26 13:18:08 阅读: 评论:0

Chapter 3
3.1
If o a  were to increa, the bandgap energy      would decrea and the material would begin      to behave less like a miconductor and more      like a metal.  If o a  were to decrea, the      bandgap energy would increa and the
material would begin to behave more like an      insulator.
_______________________________________  3.2
Schrodinger's wave equation is:
()()()t x x V x
t x m ,,2222ψ⋅+∂ψ∂-                                                    ()t想和你永远在一起
t x j ∂ψ∂=,
Assume the solution is of the form:
()()⎥⎥⎦⎤
⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x  exp ,      Region I:  ()0=x V .  Substituting the
assumed solution into the wave equation, we      obtain:
()⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m  exp 22                ()⎪⎭
⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u  exp                ()⎥⎥⎦
⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j    exp      which becomes
()()⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m  exp 22
2                  ()⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jk
exp 2                        ()⎪⎭
⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u  exp 22                            ()⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu  exp      This equation may be written as
()()()()02222
22
=+∂∂+∂∂+-x u mE
x x u x x u jk x u k
Setting ()()x u x u 1= for region I, the equation      becomes:
()
()
()
()0212212
12=--+x u k dx
x du jk
dx x u d α      where
2
22
mE
=
α                                        Q.E.D.      In Region II, ()O V x V =.  Assume the same      form of the solution:
()()⎥⎥⎦⎤
⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x  exp ,      Substituting into Schrodinger's wave      equation, we find:
()()⎥⎥⎦⎤⎢⎢⎣
⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m  exp 22
2                  ()⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jk
exp 2                        ()⎪⎭
⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u  exp 2
2                            ()⎥⎥⎦⎤
⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O  exp                                ()⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫  ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu  exp      This equation can be written as:
()()()222
2x x u x x u jk x u k ∂∂+∂∂+-                            ()()0222
2=+-x u mE
x u mV O
Setting ()()x u x u 2= for region II, this      equation becomes
()()dx x du jk dx
x u d 22
222+                          ()0222
2
2=⎪⎪⎭
⎫  ⎝⎛+--x u mV k O  α      where again
222
mE
=α                                      Q.E.D.
_______________________________________
3.3      We have        ()()()
()0212
21212=--+x u k dx x du jk dx x u d α      Assume the solution is of the form:
()()[]x k j A x u -=αexp 1                                ()[]x k j B +-+αexp
The first derivative is
()()()[]x k j A k j dx
x du --=ααexp 1                            ()()[]x k j B k j +-+-ααexp      and the cond derivative becomes
()
()[]()[]x k j A k j dx x u d --=ααexp 2
2
12
()[]()[]x k j B k j +-++ααexp 2
Substituting the equations into the      differential equation, we find
()()[]x k j A k ---ααexp 2
()()[]x k j B k +-+-ααexp 2
(){()[]x k j A k j jk --+ααexp 2
()()[]}x k j B k j +-+-ααexp                  ()
()[]{x k j A k ---ααexp 22                    ()[]}0exp =+-+x k j B α      Combining terms, we obtain
()()()[]
222222αααα----+--k k k k k                    ()[]x k j A -⨯αexp
()()()[]
骗取银行贷款罪222222αααα--++++-+k k k k k
()[]0exp =+-⨯x k j B α      We find that
00=                                              Q.E.D.      For the differential equation in ()x u 2 and the      propod solution, the procedure is exactly      the same as above.
_______________________________________  3.4
We have the solutions        ()()[]x k j A x u -=αexp 1                          ()[]x k j B +-+αexp      for a x <<0 and
()()[]x k j C x u -=βexp 2
()[]x k j D +-+βexp      for 0<<-x b .
The first boundary condition is        ()()0021u u =
which yields        0=--+D C B A
The cond boundary condition is        0201===x x dx du dx du
好的耳机品牌which yields
()()()C k B k A k --+--βαα                                          ()0=++D k β      The third boundary condition is        ()()b u a u -=21      which yields
()[]()[]a k j B a k j A +-+-ααexp exp                        ()()[]b k j C --=βexp
()()[]b k j D -+-+βexp      and can be written as
()[]()[]a k j B a k j A +-+-ααexp exp                        ()[]b k j C ---βexp
()[]0exp =+-b k j D β      The fourth boundary condition is
b
x a x dx du
dx du -===21
which yields
()()[]a k j A k j --ααexp            ()()[]a k j B k j +-+-ααexp                ()()()[]b k j C k j ---=ββexp
()()()[]b k j D k j -+-+-ββexp      and can be written as
()()[]a k j A k --ααexp              ()()[]a k j B k +-+-ααexp                  ()()[]b k j C k ----ββexp
()()[]0exp =+++b k j D k ββ
_______________________________________  3.5
(b) (i) First point: πα=a
Second point: By trial and error,                                  πα729.1=a          (ii) First point: πα2=a
Second point: By trial and error,                                  πα617.2=a
_______________________________________
3.6      (b) (i) First point: πα=a                Second point: By trial and error,
πα515.1=a            (ii) First point: πα2=a
Second point: By trial and error,                                    πα375.2=a  _______________________________________
3.7        ka a a
a P cos cos sin =+'ααα      Let y ka =,  x a =α      Then
y x x
x P cos cos sin =+'      Consider dy d  of this function.        ()[]{}
y x x x P dy d sin cos sin 1
-=+⋅'-      We find
()()()⎭⎬⎫⎩
⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 11
2
y dy
dx
x sin sin -=-      Then
y x x x x x P dy dx sin sin cos sin 12
-=⎭
⎬⎫⎩⎨⎧-⎥⎦⎤
⎢⎣⎡+-'      For πn ka y ==,  ...,2,1,0=n 0sin =⇒y      So that, in general,
()()dk d ka d a d dy dx
αα===0      And        2
2 mE
=α      So
dk dE
m mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-22
/122221  α      This implies that
dk dE dk d =
=0α for a
n k π= _______________________________________        3.8 (a) πα=a 1      π=⋅a E m o 2
1
2      ()(
)
(
)(
)
210312
34222
21102.41011.9210054.12---⨯⨯⨯==ππa m E o            19104114.3-⨯=J    From Problem 3.5
πα729.12=a
π729.122
2
=⋅a E m o      ()(
德国旅行)
(
)(
)
210312
3422102.41011.9210054.1729.1---⨯⨯⨯=πE          18100198.1-⨯=J    12E E E -=∆
1918104114.3100198.1--⨯-⨯=          19107868.6-⨯=J
or  24.4106.1107868.619
19
三年级竖式计算题
=⨯⨯=∆--E eV
(b) πα23=a
π222
3=⋅a E m o
()()(
)()
2
1031
2
3423102.410
11.9210054.12---⨯⨯⨯=
πE
18103646.1-⨯=J
From Problem 3.5,      πα617.24=a
π617.222
4=⋅a E m o
()()(
)()
2
1031
2
3424102.410
11.9210054.1617.2---⨯⨯⨯=
πE
18103364.2-⨯=J      34E E E -=∆
1818103646.1103364.2--⨯-⨯=            1910718.9-⨯=J
or 07.6106.110718.919
19
=⨯⨯=∆--E eV
_______________________________________
3.9 (a) At π=ka , πα=a 1
π=⋅a E m o 2
12      ()()(
)
()
2
1031
2
3421102.410
11.9210054.1---⨯⨯⨯=
πE
19104114.3-⨯=J
At 0=ka ,  By trial and error,                            πα859.0=a o        ()
()()()
2
1031
2
342
102.41011.9210054.1859.0---⨯⨯⨯=
πo
E
19105172.2-⨯=J
o E E E -=∆1
1919105172.2104114.3--⨯-⨯=                2010942.8-⨯=J
or 559.010
6.110942.819
20
=⨯⨯=∆--E eV (b) At π2=ka , πα23=a
π222
3=⋅a E m o
()
()()()
2
1031
2
342
3
102.41011.9210054.12---⨯⨯⨯=
πE
18103646.1-⨯=J
At π=ka . From Problem 3.5,
πα729.12=a
π729.122
2=⋅a E m o
()()()()
2
10
312历史语言学
3422102.41011.9210054.1729.1---⨯⨯⨯=
πE
18
10
0198.1-⨯=J
23E E E -=∆
1818100198.1103646.1--⨯-⨯=          19104474.3-⨯=J
or  15.2106.1104474.319
19
=⨯⨯=∆--E eV
_______________________________________
3.10 (a) πα=a 1
π=⋅a E m o 2
12
()()(
)()
2
1031
2
3421102.410
11.9210054.1---⨯⨯⨯=
πE
19104114.3-⨯=J
From Problem 3.6,  πα515.12=a
π515.122
2=⋅a E m o
()()(
)()
2
1031
2
3422102.410
11.9210054.1515.1---⨯⨯⨯=
πE
1910830.7-⨯=J      12E E E -=∆
1919104114.310830.7--⨯-⨯=              19104186.4-⨯=J
or 76.2106.1104186.419
19
=⨯⨯=∆--E eV
(b) πα23=a
π222
3=⋅a E m o
()()(
)()
2
1031
2
3423102.410
11.9210054.12---⨯⨯⨯=
πE
18103646.1-⨯=J
From Problem 3.6,  πα375.24=a
π375.222
4=⋅a E m o
()()(
)
()
2
1031
2
3424102.410
11.9210054.1375.2---⨯⨯⨯=
πE
18109242.1-⨯=J        34E E E -=∆
1818103646.1109242.1--⨯-⨯=                1910597.5-⨯=J
or 50.3106.110597.519
19
=⨯⨯=∆--E eV
_____________________________________
主题党日主持词3.11 (a) At π=ka , πα=a 1
π=⋅a E m o 2
12
()()(
)()
2
1031
2
3421102.410
11.9210054.1---⨯⨯⨯=
πE
19104114.3-⨯=J
At 0=ka , By trial and error,                                πα727.0=a o
π727.022
=⋅a E m o o
()()(
)()
2
1031
2
342102.410
11.9210054.1727.0---⨯⨯⨯=
πo E
19
108030.1-⨯=J
o E E E -=∆1
1919108030.1104114.3--⨯-⨯=                  19106084.1-⨯=J
or  005.110
6.1106084.119
19
=⨯⨯=∆--E eV (b) At π2=ka ,  πα23=a
π222
3=⋅a E m o
()
()()()
2
1031
2
342
3102.41011.9210054.12---⨯⨯⨯=
πE
18103646.1-⨯=J
At π=ka , From Problem 3.6,
πα515.12=a
π515.122
2=⋅a E m o
()()(
)()
2
1034
2
3422102.410
11.9210054.1515.1---⨯⨯⨯=
πE
1910830.7-⨯=J
23E E E -=∆
191810830.7103646.1--⨯-⨯=          1910816.5-⨯=J
or  635.3106.110816.519
19
=⨯⨯=∆--E eV
_______________________________________
3.12
For 100=T K,                    ()()⇒+⨯-
=-1006361001073.4170.12
4
g
E
164.1=g E eV              200=T K,  147.1=g E eV              300=T K,  125.1=g E eV              400=T K,  097.1=g E eV              500=T K,  066.1=g E eV
600=T K,  032.1=g E eV
_______________________________________  3.13
The effective mass is given by
1
222*
1-⎪⎪⎭
⎫  ⎝⎛⋅=dk E d m
We have
()()B curve dk
E d A curve dk E d 222
2>      so that  ()()B curve m A curve m **<
_______________________________________  3.14
The effective mass for a hole is given by        1
222*
1-⎪⎪⎭
⎫  ⎝
⎛⋅
=dk E d m p        We have that
()()B curve dk
E
d A curv
e dk E d 2222>
so that  ()()B curve m A curve m p p *
*<
_______________________________________  3.15
Points A,B:  ⇒<0dk dE
velocity in -x direction
Points C,D:  ⇒>0dk
dE
四年级下册科学教学计划
velocity in +x direction
Points A,D:  ⇒<02
2dk
E
d                                          negativ
e effective mass
Points B,C:  ⇒>02
2dk
E
d                                            positiv
e effective mass _______________________________________

本文发布于:2023-07-26 13:18:08,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/1118243.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图