杨浦区2014学年度第二学期初三质量调研
数 学 试 卷 2015.4
(完卷时间 100分钟 满分 150分)
一、 选择题(本大题每小题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】
1.如果x=2是方程的根,那么a的值是 ( ▲ )
(A)0; (B)2; (C)-2; (D)-6.
2.十佳歌手策划案在同一直角坐标系中,若正比例函数的图像与反比例函数的图像没有公
共点,则 ( ▲ )
(A)k1k2<0; (B)k1k2>0; (C)k1+k2<0; (D)k1+k2>0.
3.某篮球队12名队员的年龄如下表所示:
则这12名队员年龄的众数和中位数分别是 ( ▲ )
(A)2, 19; (B)18, 19; (C)2, 19.5; (D)18, 19.5.
4.下列命题中,真命题是 ( ▲ )
(A)周长相等的锐角三角形都全等; (B)周长相等的直角三角形都全等;
(C)周长相等的钝角三角形都全等; (D)勤州周长相等的等腰直角三角形都全等.
5.下列图形中,是中心对称图形但不是轴对称图形的是 ( ▲ )
(A); (B); (C); (D).
6.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的一个平方根.其中,所有正确说法的序号是 ( ▲ )
(A) ①④; (B)②③; (C)①②④; (D)①③④.
二、 填空题(本大题每小题4分,满分48拔河比赛作文400字分)
【请将结果直接填入答题纸的相应位置上】
7.分解因式: = ▲ .
8.不等式的解集是 ▲ .
9.方程的解为 ▲ .
10.如果关于x纳兰性德的诗的方程有两个实数根,那么m的取值范围是 ▲ .
11.如果将抛物线平移到抛物线的位置,那么平移的方向和距离分别是 ▲ .
12.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ▲ .
13.如图,△ABC中,如果AB=AC,AD⊥BC于点D,M为AC中点,AD与BM交于点G,那么的值为 ▲ .
14.如图,在中,记,点P为BC边的中点,则= ▲ (用向量、来表示).
15.如图,Rt△ABC中,∠ACB=,BC=4cm,AC=3cm,⊙O是以BC为直径的圆,如果⊙O与⊙A相内切,那么⊙A的半径长为 ▲ cm.
16.本市某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是 ▲ .
17.对于平面直角坐标系 xOy中的点P(a,b),若点P'的坐标为()(其中
k为常数,且),则称点P'为点P的“k属派生点”.例如:P(1,4)的“2属派生
点”为P'(),即P'(3,6).若点P的“k属派生点”的坐标为(3,
3),请写出一个符合条件的点P的坐标: ▲ .
澳门筹码18.如图,钝角△ABC中,tan∠BAC=,BC=4,将三角形绕着点
A旋转,点C落在直线AB上的点C,处,点B落在点B,处,若C、
(第18题图)
B、B,恰好在一直线上,则AB的长为 ▲ .
三、 解答题(第19~22题每题10分,第23~24题每题12分,第25题14分,满分78分)
19.(本题满分10分) 计算:.
20.(本题满分10分) 解方程组:
21. (本题满分10分)
如图,在一笔直的海岸线上有A、B两个观察站,A在B的正东方向,A与B相距2千米。有一艘小船在点P处,从A测得小船在北偏西的方向,从B测得小船在北偏东的方向。
(1)求点P到海岸线的距离;
(2)小船从点P处沿射线AP的方向航行一段时间后到达点C处,此时,从B点测得小船在北偏西的方向。求点C与点B之间的距离。(注:答案均保留根号)
22.(本题满分10分)
现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务,已知甲队比乙队平均每天多安装2台空调. 求甲、乙两个安装队平均每天各安装多少台空调.
23.(本题满分12分)
已知:如图,Rt△ABC和 Rt△CDE中,∠ABC=∠CDE =,且BC与CD共线,联结AE花剪纸,点M为AE中点,联结BM,交AC于点G,联结MD,交CE于点H。
(1)求证:MB=MD;
(2)当AB=BC,DC=DE时,求证:四边形MGCH为矩形。
24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分,)
已知:在直角坐标系中,直线y=x+1与x轴交与点A,与y轴交与点B,抛物线
的顶点D在直线AB上,与y轴的交点为C。
(1)若点C(非顶点)与点B重合,求抛物线的表达式;
(2)若抛物线的对称轴在y轴的右侧,且CD⊥AB,求∠CAD的正切值;
(3)在第(2)的条件下,在∠ACD的内部作射线CP交抛物线的对称
轴于点P,使得∠DCP=∠CAD,求点P的坐标。
25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)
在Rt△ABC中,∠BAC=90°,BC=10,,点O是AB边上动点,以O为圆
心,OB为半径的⊙O与边BC的另一交点为D,过点D作出气粗是什么原因AB的垂线,交⊙O于点E,联结BE、AE。
(1) 当AE//BC(如图(1))时,求⊙O的半径长;
(2) 设BO=x,AE=y,求y关于 x的函数关系式,并写出定义域;
(3) 若以A为圆心的⊙A与⊙O有公共点D、E,当⊙A恰好也过点C时,求DE的长。
杨浦区2014学年度第二学期初三质量调研
数学试卷答案及评分标准 2015.4
四、 选择题(本大题每小题4分,满分24分)
1.C ;2. A;3. B;4. D;5. A;6. C
五、 填空题(本大题每小题4分,满分48分)
7.;8.;9.;10.;11.右,2;12.;13.
14.;15.;16. 15;17.(1,2)等;18. E
D
六、 解答题(第19~22题每题10分,第23~24题每题12分,第25题佛言佛语14分,满分78分)
19.解:原式=---------------------------------------------------(8分)
=-----------------------------------------------------------------------------------(2分)
20.解:由(2)变形得-----------------------------------------------(2分)
由此,得:-------------------------------------------------------(2分)
∴原方程组转化为或---------------------------------------(2分)
解得:-----------------------------------------(4分)
原方程组的解为
21.解:(1)作PD⊥AB于点D,设PD=x,
由题意可知∠PBA=,∠PAB=,-------------------------------------------------------(1分)
∴BD=x,AD=,--------------------------------------------------------------------------------(1分)
∵AB=2,∴,--------------------------------------------------------------------------(1分)
∴,------------------------------------------------------------------------------(1分)
∴点P到直线AB的距离是千米。--------------------------------------------(1分)
(2)过点B作BF⊥AC于点F,由题意得∠PBC=,∠CPB=,---(1分)
∴∠C=,-------------------------------------------------------------------------------------(1分)
在Rt△ABF中,∠PAB=,AB=2,∴BF=1,-------------------------------------------(1分)