不可压流计算的Projection方法和SIMPLE方法间桥

更新时间:2023-07-24 11:47:59 阅读: 评论:0

不可压流计算的Projection 方法和SIMPLE 方法间桥梁的搭建麦箭
倪明玖
中国科学院研究生院物理科学学院
不可压流计算方法设计的一个核心问题是发展合适的离散方法,满足不可压约束条件。原始变量法中,获得很好应用的有MAC 方法 [1],Projection 方法 [2-5]和SIMPLE 方法[6-8]。MAC 是显式法,已应用到湍流DNS (Direct Numerical Simulation)和多流体界面流的数值模拟。Projection 方法和SIMPLE 方法是隐式或半隐式算法。隐式算法较之显式法的优越性是时间步长可以大大增加。Projection 方法已经广泛应用于非定常流的模拟,而SIMPLE 类方法则成功地模拟定常流,特别是传热有关的流动计算。SIMPLE 类方法也被用来解非定常流的计算。分析这些原始变量法 (特别是Projection 方法和SIMPLE 方法)间的关系将很有意义。
本文将在Projection 方法和SIMPLE 方法间搭建一个桥梁。首先通过对压力梯度项进行非线形离散(()
n n p p ∇−+∇+n n I θθ1),基于矩阵分析方法构造了一类具有二阶时间精度的Projection 方法。包括一类三步和一类四步Projection 方法。这里是非线形系数矩阵,它可能是网格尺寸、时间步长、流动速度的函数。并将标准的SIMPLE 方法写成简洁的矢量表达式。一些经典的二阶精度Projection 方法和 SIMPL
E 类方法是本文构建的一类Projection 方法的特例。而SIMPLEC 方法更是完全等价于经典的三步Projection 方法。本文并证明标准的 SIMPLE 方法及SIMPLEC 方法,应用到非定常流的计算中,有二阶时间精度。这样,本文在这两类方法间搭建了一桥梁。
n θ通过模拟两维Taylor 涡,数值验证SIMPLE 方法和本文构造的Projection 方法是二阶时间精度算法(见图一)。用Projection 方法,结合全守恒(质量、动量和动能守恒)四阶空间离散格式,对直管道二维充分发展通道湍流进行了直接数值模拟,并和谱方法的结果[9]进行了比较(见图二)。结合Level Set 方法[10]和 VOF(Volume of Fluid)方法[11],本文应用Projection 方法模拟了多流体界面流,并和实验结果[12,13]及数值解[14]进行了比较(见图三和图四)。结合电流守恒格式[15],本文也模拟了强磁场作用下的金属流体MHD 流,并和分析解[16]进行了比较。
参考文献
1.Harlow, F.H., Welch, J.E., Numerical Calculation of Time-Dependent Viscous Incompressible
Flow of Fluid with Free Surface, Physics of Fluids, Vol.8, No.12, pp.2182-2189, 1965
2.Chorin, A.J., Numerical Solution of Navier-Stokes Equations, Mathematics of Computation,
Vol.22, pp:745, 1968
豆浆可以隔夜喝吗3.Kim, J., Moin, P., Application of Fractional-Step Method to Incompressible Navier-Stokes
Equations, Journal of Computational Physics, Vol.59, pp.108, 1985
4.Bell, J.B., Colella, P., Glaz, H.M., A Second-Order Projection Method for the Incompressible
Navier-Stokes Equations, Journal of Computational Physics, V ol.85, pp.257, 1989
5.Choi, H., Moin, P., Effects of the Computational Time Step on Numerical Solutions of
Turbulent Flow, Journal of Computational Physics, Vol.113, pp.1-4, 1994
6.Patankar, S.V., Spalding, D.B., A Calculation Procedure for Heat, Mass and Momentum
Transfer in Three-Dimensional Parabolic Flows, International Journal Heat and Mass Transfer, Vol.15, pp. 1787-1806, 1972
7.Patankar, S.V., A Calculation Procedure for Two-Dimensional Elliptic Situations, Numerical
Heat Transfer, Vol.4, pp:409-425, 1981
8.Van Doormaal J.P., Raithby, G.D., Enhancement of the SIMPLE Method for Predicting芋头汤的做法大全
Incompressible Fluid Flows, Numerical Heat Transfer, Vol.7, pp: 147-163, 1984
9.Kasagi, N., Tomita, Y., Kurda, A., Direct Numerical Simulation of Passive Scalar Field in a
Turbulent Channel Flow, Journal of Heat Transfer, Vol.114, PP. 598-606, 1992
10.Sussman, M., Smereka, P., Osher, S., A Level Set Approach for Computing Solutions to
Incompressible Two-Pha Flow, Journal of Computational Physics, Vol.114, pp:146-59, 1994 11.Rider, W.J., Kothe, D.B., Reconstructing Volume Tracking, Journal of Computational Physics,
Vol. 141, 112 (1998)
12.Martin, J.C, Moyce, W.J., An Experimental Study of the Collap of Liquid Columns on a Rigid
Horizontal Plane, Philo. Trans. Royal Soc. London, Series A, Math. Phys. Sci. 244 (882) (1952) 312-324
13.Bhaga, D., Weber, M.E., Bubbles in Viscous Liquids: Shapes, Wakes and Velocities, Journal of
Fluid Mechanics 105, 61 (1981)
14.Ryskin, G., Leal, L.G., Numerical Solution of Free-Boundary Problems in Fluid Mechanics, Part
II., Buoyancy-driven motion of a gas bubble through a quiescent liquid, Journal of Fluid
Mechanics 148, 19 (1984)
15.Ni, M.-J., Munipalli, R., Morley, N., Huang, P. Abdou, M.A., A Current Density Conrvative
Scheme for Incompressible MHD Flows at Low Magnetic Reynolds Numbers. Part I: on a Rectangular Collocated Mesh. Revid manuscript under review of Journal of Computational Physics.
16.Hunt, J.C.R., Magnetohydrodynamic Flow in Rectangular Ducts, Journal of Fluid Mechanics,
Vol.21, pp:577-590, 1965
By SIMPLE Method using 2nd-order update of temporal term
By classical four-step Projection Method with a Runge-Kutta technique ud  Figure 1 The Maximum Error of Velocity u over the Refined Meshes
y
+
024681012
14161820(a). Dimensionless mean velocity and
temperature
y
0.00.5
1.0
1.5少年不识愁滋味为赋新词强说愁
2.0
2.5
3.0
(b). Distribution of rms velocity and temperature
-0.12-0.08-0.040.000.040.080.120.160.20Loss
Gain
y
+
街舞音乐
-0.12-0.08-0.040.00
0.040.080.120.16
0.20
Loss
Gain
y画的图片
+
050100150200250
300-0.20-0.15-0.10
-0.050.00
0.05
0.10
0.15
0.20
0.25(c). Budget of turbulence kinetic
(d). Budget of temperature variance 22
θϑ′=k
Figure 2 DNS results for fully developed channel thermal field
(a)Zero level t contour from time=0.2 to time=3.0 with time interval 0.2
(b) Location of water front at y=0
100首经典歌曲
教育故事幼儿园(c) Height of wetted wall at x=0
Figure 3: History of water front location on solid surfaces in the dam break

本文发布于:2023-07-24 11:47:59,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/1114524.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:方法   时间   模拟   精度
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图