python中plt.hist参数详解
matplotlib.pyplot.hist(
x, bins=10, range=None, normed=Fal,
weights=None, cumulative=Fal, bottom=None,
histtype=u'bar', align=u'mid', orientation=u'vertical',
rwidth=None, log=Fal, color=None, label=None, stacked=Fal,
hold=None, **kwargs)
x : (n,) array or quence of (n,) arrays
这个参数是指定每个bin(箱⼦)分布的数据,对应x轴
bins : integer or array_like, optional
施工面积
这个参数指定bin(箱⼦)的个数,也就是总共有⼏条条状图
火烧赤壁的主人公是谁
normed : boolean, optional
If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e.,n/(len(x)`dbin)这个参数指定密度,也就是每个条状图的占⽐例⽐,默认为1
color : color or array_like of colors or None, optional
这个指定条状图的颜⾊北海旅游景点介绍
单位工作鉴定
我们绘制⼀个10000个数据的分布条状图,共50份,以统计10000分的分布情况
"""
Demo of the histogram (hist) function with a few features.
In addition to the basic histogram, this demo shows a few optional features:
第一滴血5迅雷下载* Setting the number of data bins
* The ``normed`` flag, which normalizes bin heights so that the integral of the histogram is 1. The resulting histogram is a probability density.
* Setting the face color of the bars
* Setting the opacity (alpha value).
"""
import numpy as np
import matplotlib.mlab as mlab
消的成语import matplotlib.pyplot as plt
# example data
mu = 100 # mean of distribution
sigma = 15 # standard deviation of distribution
x = mu + sigma * np.random.randn(10000)
num_bins = 50
# the histogram of the data
n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='blue', alpha=0.5) # add a 'best fit' line
y = pdf(bins, mu, sigma)
plt.plot(bins, y, 'r--')
plt.xlabel('Smarts')木门十大品牌排名
plt.ylabel('Probability')
plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')
翻唱歌曲# Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
plt.show()