[3DUNet-MRI图像预处理1]校正偏差域+裁剪patch+归⼀化1. 校正偏差域
诸如扫描仪中的患者位置,扫描仪本⾝以及许多未知问题等因素可导致MR图像上的亮度差异。 换句话说,强度值(从⿊⾊到⽩⾊)可以在同⼀组织内变化。 这被称为偏置场。 这是⼀种低频平滑的不良信号,会破坏MR图像。 偏置场导致MRI机器的磁场中的不均匀性。 如果未校正偏置字段将导致所有成像处理算法(例如,分段(例如,Freesurfer)和分类)输出不正确的结果。 在进⾏分割或分类之前,需要预处理步骤来校正偏置场的影响。
如下图所⽰:
使⽤N4BiasFieldCorrection可以校正偏差域
案例展⽰
使⽤N4偏置场校正(B)和基于⾼斯滤波器的⽅法(C)对原始图像(A)进⾏不均匀性校正的⽰例。 底⾏显⽰了它们的强度直⽅图。 ⽩⾊箭头显⽰热点的中⼼。 ⿊⾊箭头显⽰WM信号(左)和GM和福尔马林信号(右)。 请注意,⾯板(B和C)中的⾼边界信号是N4算法的已知效果,但是,在进⼀步图像处理之前,这些边界被移除。
import SimpleITK as sitk
import numpy as np
from nipype.interfaces.ants import N4BiasFieldCorrection
def correct_bias(in_file, out_file, image_type=sitk.sitkFloat64):
"""
Corrects the bias using ANTs N4BiasFieldCorrection. If this fails, will then attempt to correct bias using SimpleITK :param in_file: nii⽂件的输⼊路径
:param out_file: 校正后的⽂件保存路径名
:return: 校正后的nii⽂件全路径名
"""
#使⽤N4BiasFieldCorrection校正MRI图像的偏置场
correct = N4BiasFieldCorrection()
correct.inputs.input_image = in_file
correct.inputs.output_image = out_file
try:
done = correct.run()
return done.outputs.output_image
except IOError:
warnings.warn(RuntimeWarning("ANTs N4BIasFieldCorrection could not be found."
"Will try using SimpleITK for bias field correction"
" which will take much longer. To fix this problem, add N4BiasFieldCorrection"
" to your PATH system variable. (example: EXPORT PATH=${PATH}:/path/to/ants/bin)"))
input_image = sitk.ReadImage(in_file, image_type)
output_image = sitk.N4BiasFieldCorrection(input_image, input_image > 0)
sitk.WriteImage(output_image, out_file)
return os.path.abspath(out_file)
def normalize_image(in_file, out_file, bias_correction=True):
#bias_correction:是否需要校正
if bias_correction:
correct_bias(in_file, out_file)
el:
return out_file
reference:
2. 裁剪所有MRI图像放缩到同⼀尺度后保存到hdf5⽂件中
#training_files:训练的MRI⽂件列表,每⼀项是⼀个元组,元组中包括4种不同模态图像+ground truth的全路径
#config["image_shape"]:处理后的图⽚⼤⼩(144,144,144)
write_data_to_file(training_files, config["data_file"], image_shape=config["image_shape"])
def write_data_to_file(training_data_files, out_file, image_shape, truth_dtype=np.uint8, subject_ids=None,
normalize=True, crop=True):
"""
Takes in a t of training images and writes tho images to an hdf5 file.
:param training_data_files: 训练的MRI⽂件列表,每⼀项是⼀个元组,元组中包括4种不同模态图像+ground truth的全路径 Example: [('', '', '','',''),
('', '', '','' '')]
:param out_file: 保存的hdf5⽂件路径
:
param image_shape: 保存的image shape.
:param truth_dtype: ground truth数据类型,Default is 8-bit unsigned integer.
:return: Location of the hdf5 file with the image data written to it.
"""
#样本数
n_samples = len(training_data_files)
#通道数等于模态数4
n_channels = len(training_data_files[0]) - 1
try:
#创建hdf5⽂件,在下创建3个压缩的可扩展数组
hdf5_file, data_storage, truth_storage, affine_storage = create_data_file(out_file,
报字成语
n_channels=n_channels,
n_samples=n_samples,
image_shape=image_shape)
except Exception as e:
# If something goes wrong, delete the incomplete data file
rai e
#crop=True:裁剪
write_image_data_to_file(training_data_files, data_storage, truth_storage, image_shape,
truth_dtype=truth_dtype, n_channels=n_channels, affine_storage=affine_storage, crop=crop)
if subject_ids:
ate_array(, 'subject_ids', obj=subject_ids)
#训练样本数据归⼀化冲动的近义词
if normalize:
normalize_data_storage(data_storage)
hdf5_file.clo()
#返回hdf5⽂件名
return out_file
创建hdf5⽂件要借助tables库
import tables
def create_data_file(out_file, n_channels, n_samples, image_shape):
#创建hdf5⽂件
hdf5_file = tables.open_file(out_file, mode='w')
#压缩可扩展数组
#定义⼀个filter来说明压缩⽅式及压缩深度
filters = tables.Filters(complevel=5, complib='blosc')
#定义data和truth的shape
##能够扩展其⼀个维度,我们把可以扩展这个维度的shape设置为0
data_shape = tuple([0, n_channels] + list(image_shape))#(0,4,144,144,144)
truth_shape = tuple([0, 1] + list(image_shape))#(0,1,144,144,144)
#创建3个压缩可扩展数组保存data,truth和affine
data_storage = ate_earray(, 'data', tables.Float32Atom(), shape=data_shape,
filters=filters, expectedrows=n_samples)
truth_storage = ate_earray(, 'truth', tables.UInt8Atom(), shape=truth_shape,六年级穷人续写
filters=filters, expectedrows=n_samples)
#放射变换数组
affine_storage = ate_earray(, 'affine', tables.Float32Atom(), shape=(0, 4, 4),
filters=filters, expectedrows=n_samples)
return hdf5_file, data_storage, truth_storage, affine_storage
def write_image_data_to_file(image_files, data_storage, truth_storage, image_shape, n_channels, affine_storage,
truth_dtype=np.uint8, crop=True):
for t_of_files in image_files:
打印机开关在哪里
#t_of_files:不同模态图像路径的元组('', '', '','','')
#crop=True
渴的英语#对4个模态+truth图像根据前景背景裁剪
images = reslice_image_t(t_of_files, image_shape, label_indices=len(t_of_files) - 1, crop=crop)
#获取4个模态+truth的image的数组
subject_data = [_data() for image in images]
#images[0].affine:4*4
add_data_to_storage(data_storage, truth_storage, affine_storage, subject_data, images[0].affine, n_channels,
truth_dtype)
#返回data和ground_truth
return data_storage, truth_storage
def add_data_to_storage(data_storage, truth_storage, affine_storage, subject_data, affine, n_channels, truth_dtype):
#添加1份subject_data数据,写⼊时将subject_data扩展到与create_data_file中定义的维度相同
data_storage.append(np.asarray(subject_data[:n_channels])[np.newaxis])#np.asarray:==>[4,144,144,144] 扩展=new.axis:[1,4,144,144,144]
truth_storage.append(np.asarray(subject_data[n_channels], dtype=truth_dtype)[np.newaxis][np.newaxis])#np.asarray:==>[144,144,144] 扩展=new.axis:[1,1,14 affine_storage.append(np.asarray(affine)[np.newaxis])#np.asarray:==>[4,4] 扩展=new.axis:[1,4,,4]
对nii image根据综合4个模态+truth和设置的background像素值获取foreground,并裁剪后再放缩⾄指定⼤⼩的
过程如下
获取foreground并裁剪的效果可看另⼀篇博客:
def reslice_image_t(in_files, image_shape, out_files=None, label_indices=None, crop=Fal):
#in_files:('', '', '','','')
#label_indices:模态个数-4
#对图像进⾏裁剪
if crop:
#返回各个维度要裁剪的范围[slice(),slice(),slice()]
crop_slices = get_cropping_parameters([in_files])
el:
做善事crop_slices = None
#对in_files中的每个image裁剪放缩后返回的image列表
images = read_image_files(in_files, image_shape=image_shape, crop=crop_slices, label_indices=label_indices) if out_files:
for image, out_file in zip(images, out_files):
<_filename(out_file)车载行车记录仪
return [os.path.abspath(out_file) for out_file in out_files]
el:
return images
def get_cropping_parameters(in_files):
#in_files:[('', '', '','','')]
if len(in_files) > 1:
食品广告语
foreground = get_complete_foreground(in_files)
el:
#return_image=True:返回foreground image
#in_files[0]:('', '', '','','')
foreground = get_foreground_from_t_of_files(in_files[0], return_image=True)
#根据foreground确定各个维度要裁剪的范围,crop_img_to进⾏裁剪
#return_slices=True:返回各个维度要裁剪的范围[slice(),slice(),slice()]
return crop_img(foreground, return_slices=True, copy=True)
def get_foreground_from_t_of_files(t_of_files, background_value=0, tolerance=0.00001, return_image=Fal): #t_of_files:('', '', '','','')
#image_file:
for i, image_file in enumerate(t_of_files):
#读取image⽆裁剪,⽆resize
image = read_image(image_file)
#根据设置的background值,综合所有模态和truth将image data数组中foreground位置设为True
is_foreground = np.logical__data() < (background_value - tolerance),
<_data() > (background_value + tolerance))
if i == 0:
foreground = np.zeros(is_foreground.shape, dtype=np.uint8)
#将is_foreground位置像素值设置为1
foreground[is_foreground] = 1
#返回image
if return_image:
return new_img_like(image, foreground)
#返回数组
el:
return foreground