全球首次完成杨树全基因组测序
由美国能源部启动并实施的杨树全基因组测序计划已圆满完成,并于2004年9月21日对公众开放了全序列数据库。南京林业大学科研人员尹佟明副教授参与了此项研究。杨树基因组的新闻发布及庆祝会定于12月6日在美国加州举行。该项研究可望使杨树这一重要树种的品种改良时间大大缩短,用区区几十年跨越千年关。
研究的完成,使杨树成为继拟南芥和水稻之后,第三个测定全序列的植物,并且是第一个测定全基因组序列的多年生木本植物。杨树因此被广泛接受为研究多年生植物基因组的模式物种,这使该项工作具有重大的科学意义。杨树同时又是一种重要的工业用材树种,杨树全基因组计划实施,将为生物能源的开发提供知识贮备,具有重要的实际应用价值。目前,杨树的改良还处在一种半野生的初级改良阶段,在基因组研究的基础上,通过群体和数量遗传学的手段在杨树属不同树种间开发有用等位基因,并通过遗传工程的手段进行基因重组,可望在几十年的时间里完成一般作物几千年的改良历程。
杨树全基因组全序列用“鸟枪法测定”,序列库中共含有7,649,993个序列片段,去除叶绿
体基因组的污染,测得的序列大约为8×基因组长度。目前对序列拼接的组装已完成了483Mb,占杨树基因组物理全长的90%以上,基本上覆盖了杨树基因组常染色体的大部分。基于基因芯片和单核苷酸多态性检测技术,对小的序列拼接及序列间隙的填充工作正在进行中,预期这部分工作将于明年完成。南京林业大学尹佟明副教授自2001年以来一直参与此项研究,对杨树基因组的注释工作将于今年12月初完成。
国际杨树基因组计划协作组的总负责人杰瑞先生认为,从世界范围来看,杨树在中国的林业生产中占有的比重是最大的,因此在杨树基因组信息的应用方面,中国在未来的研究中可能会居于世界前列。杨树全基因组计划的完成对我国从事林业及生物技术的科学家而言,提供了前所未有的机遇和挑战。
Science 15 September 2006:
Vol. 313. no. 5793, pp. 1596 - 1604
DOI: 10.1126/science.1128691
Rearch Articles
The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)
G. A. Tuskan,1,3* S. DiFazio,1,4 S. Jansson,5 J. Bohlmann,6 I. Grigoriev,9 U. Hellsten,9 N. Putnam,9 S. Ralph,6 S. Rombauts,10 A. Salamov,9 J. Schein,11 L. Sterck,10 A. Aerts,9 R. R. Bhalerao,5 R. P. Bhalerao,12 D. Blaudez,13 W. Boerjan,10 A. Brun,13 A. Brunner,14 V. Busov,15 M. Campbell,16 J. Carlson,17 M. Chalot,13 J. Chapman,9 G.-L. Chen,2 D. Cooper,6 P. M. Coutinho,19 J. Couturier,13 S. Covert,20 Q. Cronk,7 R. Cunningham,1 J. Davis,22 S. Degroeve,10 A. Déjardin,23 C. dePamphilis,18 J. Detter,公顷和平方米的进率9 B. Dirks,24 I. Dubchak,9,25 S. Duplessis,13 J. Ehlting,7 B. Ellis,6 K. Gendler,26 D. Goodstein,9 M. Gribskov,27 J. Grimwood,28 A. Groover,29 L. Gunter,1 B. Hamberger,7 B. Heinze,30 Y. Helariutta,12,31,33 B. Henrissat,19 D. Holligan,21 R. Holt,11 W. Huang,9 N. Islam-Faridi,34 S. Jones,11 M. Jones-Rhoades,35 R. Jorgenn,26 C. Joshi,15 J. Kangasjärvi,32 J. Karlsson,5 C. Kelleher,6 R. Kirkpatrick,11 M. Kirst,22 A. Kohler,13 U. Kalluri,1 F. Larimer,2 J. Leebens-Mack,21 J.-C. Leplé,23 P. Locascio,2 Y. Lou,9 S. Lucas,9 F. Martin,13 B. Montanini,13 C. Napoli,26 D. R. Nelson,36 C. Nelson,37 K. Nieminen,31 O. Nilsson,12 V. Pereda,13 G. Peter,22 R. Philippe,6 G. Pilate,23 A. Poliakov,25 J. Razumovskaya,2 P. Richards
on,9 C. Rinaldi,13 K. Ritland,8 P. Rouzé,10 D. Ryaboy,25 J. Schmutz,28 J. Schrader,38 B. Segerman,5 H. Shin,11 A. Siddiqui,11 F. Sterky,39 A. Terry,9 C.-J. Tsai,15 E. Uberbacher,2 P. Unneberg,39 J. Vahala,32 K. Wall,18 S. Wessler,21 G. Yang,21 T. Yin,1 C. Douglas,7 M. Marra,11 G. Sandberg,12 Y. Van de Peer,10 D. Rokhsar9,24素丸子怎么做好吃
We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun quence asmbly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the asmbled genome revealed a whole-genome duplication回望钱学森 event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A cond, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution,戌读音 tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene.
However, the relative frequency of protein domains in the two genomes is similar. Overreprented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, dia resistance, and metabolite transport.安适的意思
1 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
2广东省违章查询 Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
3 Plant Sciences Department, University of Tenne, TN 37996, USA.
4 Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
5 Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden.
6 Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
7 Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
8 Department of Forest Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
9 U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA.
10 Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, B-9052 Ghent, Belgium.
11 Genome Sciences Centre, 100-570 West 7th Avenue, Vancouver, BC V5Z 4S6, Canada.
12 Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
13 Tree-Microbe Interactions Unit, Institut National de la Recherche Agronomique (INRA)–Université Henri Poincaré, INRA-Nancy, 54280 Champenoux, France.
14 Department of Forestry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
15 Biotechnology Rearch Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
16 Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2 Canada.病毒性感冒的主要症状
17 School of Forest Resources and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
18 Department of Biology, Institute of Molecular Evolutionary Genetics, and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
19 Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS and Universities of Aix-Marille I and II, ca 932, 163 avenue de Luminy, 13288 Marille, France.
20 Warnell School of Forest Resources, University of Georgia, Athens, GA 30602, USA.
21 Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
22 School of Forest Resources and Conrvation, Genetics Institute, and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA.
23 INRA-Orléans, Unit of Forest Improvement, Genetics and Physiology, 45166 Olivet Ce
dex, France.
24 Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA.
25 Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
26 Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
27 Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
28 The Stanford Human Genome Center and the Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
29 Institute of Forest Genetics, United States Department of Agriculture, Forest Service, Davis, CA 95616, USA.
30 Federal Rearch Centre for Forests, Hauptstras 7, A-1140 Vienna, Austria.
31 Plant Molecular Biology Laboratory, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland.
32 Department of Biological and Environmental Sciences, University of Helsinki, FI-0001
4 Helsinki, Finland.
舟山普陀山旅游攻略33 Department of Biology, 200014, University of Turku, FI-20014 Turku, Finland.
34 Southern Institute of Forest Genetics, United States Department of Agriculture, Forest Service and Department of Forest Science, Texas A&M University, College Station, TX 77843, USA.
35 Whitehead Institute for Biomedical Rearch and Department of Biology, Massachutts Institute of Technology, Cambridge, MA 02142, USA.
36 Department of Molecular Sciences and Center of Excellence in Genomics and Bioinformatics, University of Tenne, Memphis, TN 38163, USA.
37 Southern Institute of Forest Genetics, United States Department of Agriculture, Forest Service, Saucier, MS 39574, USA.
38 Developmental Genetics, University of Tübingen, D-72076 Tübingen, Germany.
39 Department of Biotechnology, KTH, AlbaNova University Center, SE-106 91 Stockholm, Sweden.
The authors contributed equally to this work as cond authors.
The authors contributed equally to this work as nior authors.
* To whom correspondence should be addresd. E-mail: v