鮰鱼怎么做好吃分类号学号M********* 学校代码10487密级
关于奋斗的题目
硕士学位论文
吸附制冷等量吸附热的表征
学位申请人:涂耀东
运球
学科专业:制冷及低温工程
指导教师:舒朝晖副教授
答辩日期:2013.01.08
保教工作总结A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree for the Master of Engineering
Characterization of the Isosteric Heat of
Adsorption Refrigeration
Candidate : Tu Yaodong
Major : Refrigeration and Cryogenic Engineering
Supervisor : Assoc. Prof. Shu Zhaohui
Huazhong University of Science & Technology
Wuhan 430074, P.R.China
January, 2013
独创性声明
漳州云洞岩
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。
小提琴英语
学位论文本文签名:
日期:年月日
学位论文版权使用授权书
本学位论文本文完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
保密□,在年解密后适用本授权书。
本论文属于
不保密□。
(请在以上方框内打“√”)
学位论文本文签名:指导教师签名:
日期:年月日日期:年月日
摘要
吸附制冷采用的是水、氨等无氟的天然制冷剂,系统中也没有腐蚀性的金属卤化物,而且由平板型或者真空管集热器获得的低温热水即可驱动。因此不会造成臭氧破坏,也不会排放温室气体,对环境友好,更能利用低品位热能,变废为宝。
目前吸附制冷发展的两大瓶颈在于缺乏高效的吸附剂,以及缺乏有效的散热方法。本文研究发现等量吸附热不仅可以作为筛选及设计新型吸附的一个有力工具,而且可以帮助工程师优化散热方案。然而本研究也同时发现,目前已有研究对等量吸附热的作用没有给予足够重视,仅仅视其为一个热力学参数,尤其是在吸附制冷应用的特定工况下对吸附工质对等量吸附热的研究更是十分稀少。因此本文在已有的气固吸附等量吸附热表征方法研究的基础上,针对吸附制冷应用中的吸附过程,提出了一种预测不同吸附工质对在某种特定工况下的等量吸附热的方法。战国策是一部什么体史书
本文首先从分析吸附机理入手,对制冷应用中的吸附过程将基于动理论的层层吸附理论和基于势理论
的孔体积填充吸附理论相结合建立了物理模型,然后采用严格的表面热力学的方法描述了吸附平衡过程中的热流,结合实际吸附制冷循环的边界条件,给出了预测不同吸附工质对等量吸附热的理论计算公式;最后用所得的理论公式分别计算了目前应用最为广泛的吸附工质对硅胶-水、活性炭-氨的等量吸附热,通过与工程中目前普遍采用的冷凝近似取值进行对比分析,结果发现在27~35℃的吸附温度范围内,理论值与冷凝热的偏差处在6%~18%的范围内。
19的英文关键词:吸附制冷等量吸附热表征表面热力学
ABSTRACT
The development of solar refrigeration technologies became the worldwide focal point for concern becau the peaks of requirements in cold coincide most of the time with the availability of the solar radiation. One of the emerging technologies is the solar powered adsorption refrigeration technology which is proven to be suitable and applicable for refrigeration as well as air conditioning applications. The refrigerants ud in the systems are environmentally benign, natural refrigerants and are free from CFC. Therefore, the systems have zero ozone depleting as well as a zero global warming potentials.
Reasonable prediction and correct determination for the working pairs‘ cooling performance still repr
ents a challenge due to an ongoing inten development of novel sorbents and process, in particular for sorption systems with relatively weak sorption-interaction forces. Adsorption affinity reflects mainly the relative interaction intensity between the adsorbate and the host frame work, the interaction will lead the free adsorbate to adsorbed pha and relea heat that is part of the isosteric heat of adsorption. In other words, we can u the isosteric heat of adsorption to characterize some adsorption working pair‘s affinity, the former is more attainable and practical criteria to evaluate the working pair‘s potential performance. At the same time, we can have a rapid screening of porosity and adsorption capacity among some alternative adsorbents bad on infrared detection of the isosteric heat of adsorption. For the reasons, when we design and synthetize the optimal adsorbent with properties specifically tailored for particular cooling/heating applications, maybe we can first theoretically calculate the isosteric heat of adsorption of the ideal working pairs, cond work out the isosteric heat of adsorption of the alternative adsorbents interacting with same refrigerant under given working condition with molecular modeling, then screen out the optimum adsorbents who isosteric heat is clost to the ideal one, and at last, evaluate their practical adsorption capacity with a rapid high through-out experiment. Besides, if we can precily predict the isosteric heat of adsorption at different load levels, we can carefully study the kinetics of adsorption with different adsorbent cooling plans which will help us to lective a best plan resulting
shorter cycle time and higher SCP. So, it is meaningful to develop a simple but not losing accuracy method to facility the adsorption refrigeration engineers to design