Federated Learning with Only Positive Labels

更新时间:2023-06-23 17:04:29 阅读: 评论:0

干杯吧朋友余秀华诗歌>会计权利专利名称:Federated Learning with Only Positive
交通安全文章
哥哥嘿Labels
发明人:Ankit Singh Rawat,Xinnan Yu,Aditya Krishna
Menon,Sanjiv Kumar
申请号:US17227851
申请日:20210412
公开号:US20210326757A1
公开日:
20211021
专利内容由知识产权出版社提供
专利附图:
异地恋成功率摘要:Generally, the prent disclosure is directed to systems and methods that
perform spreadout regularization to enable learning of a multi-class classification model
in the federated tting, where each ur has access to the positive data associated with only a limited number of class (e.g., a single class). Examples of such ttings include decentralized training of face recognition models or speaker identification models, where in addition to the ur specific facial images and voice samples, the class embeddings for the urs also constitute nsitive information that cannot be shared with other urs.
申请人:Google LLC
地址:Mountain View CA US
国籍:US
更多信息请下载全文后查看
奶油水果蛋糕>录音机图片

本文发布于:2023-06-23 17:04:29,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/1022574.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:专利   成功率   全文
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图