发酵工程名词解释

更新时间:2023-06-21 04:09:39 阅读: 评论:0

优美语句fermentation(发酵):利用生物细胞(含动植物、微生物),在合适条件下经特定的代谢途径转变成所需产物菌体的过程。
fermentation engineering(发酵工程):是发酵原理与工程学的结合,是研究由生物细胞(包括动植物、微生物)参与的工艺过程的原理和科学,是研究利用生物材料生产有用物质,服务于人类的一门
综合性科学技术。
bioengineering(生物工程):以生物科学和生物技术为基础,结合化学工程,机械工程,控制工程,环境工程等工程科学,研究或发展利用生物体系或其中的一部分生产有益于社会的产品或达到一定社会目标的过程科学。广义上说是指运用生物科学知识及工程学的原理,开发利用生物材料为人类社会提供产品和服务的工程技术。狭义上是指以基因工程技术为核心的现代生物技术的总称
biocatalyst(生物催化剂):指传统发酵所利用的微生物外,还包括现在生物技术所利用的动植物细胞或细胞中的酶
isolation of strain(菌种分离):根据生产要求和菌种特征性采用各种不同的筛选方法从众多的杂菌种分离出所需的性能良好的纯种
Strain breeding (菌种选育):从分离筛选获得的有价值菌种中经过人工选育出各种突变体以大幅提高了
菌种产生有价值的代谢产物的水平,改进产品质量,去除不需要的代谢产物或产生新代谢产物
Nature breeding(自然选育):不经人工处理,利用微生物的自然突变进行菌种选育的过程
Mutation breeding (诱变育种):利用各种被称为诱变剂的物理因素和化学因素试剂处理微生物细胞提高基因突变率,再通过适当的筛选方法获得所需的高产优质植株
Cross breeding(杂交育种):通过杂交方法,将不同植株的遗传物质进行交换、重组,使不同菌株的优良性状集中在重组体中,克服长期诱变引起的生活力下降等缺陷
Protoplast fusion(原生质体融合):用酶分别酶解两个两个出发菌株的细胞壁,在高渗环境中释放出原生质,将他们混合,在助溶剂或电场作用下使他们互相凝聚,发生细胞融合,实现遗传重组
Genetically engineered breeding(基因工程育种):使用人为的方法将所需的某一供体生物的遗传物质DNA分子提取出来,在离体条件下进行切割,获得代表某一性状的目的基因,把该目的基因与作为载体的DNA 分子连接起来,然后导入某一受体细胞中,让外来的目的基因在受体细胞中进行正常的复制和表达,从而获得目的产物
Culture prervation/maintenance of culture(菌种保藏):根据菌种的生理生化特点,人为创造条件使孢子或菌体的生长代谢活动尽量降低,以减少其变异
Degeneration of culture/strain deterioration(菌种退化):通常是指在较长时期传代保藏后,菌株的一个或多个生理性状和形态特征逐渐减退或消失的现象
Rejuvenation of culture(菌种复壮):使衰退的菌种重新恢复原来的优良特性
Inoculum enlargement(种子扩大培养):指将保藏在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入固体试管斜面活化后,在经过摇瓶或静置培养,以及种子罐逐级扩大培养而获得发酵产量高、生产性能稳定、数量充足、不被杂菌和噬菌体污染的生产菌种的纯种制备过程
Seed age(接种龄):指种子罐中培养的菌丝体移入下一级种子罐或发酵罐式的培养时间
Seed volume/inoculum size(接种量):指移入种子液的体积和接种后培养液体积的比
Fermentation industrial raw material(发酵工业原料):通常以糖质或淀粉质等碳水化合物为主,加入少量有机氮源和无机氮源,只要不含毒物,一般无精制的必要
Fermentation medium(发酵培养基):是指提供微生物生长繁殖和生物合成各种代谢产物所需要的,按照一
简笔画西瓜定的比例配置的多种营养物质的混合物
Growth factor(生长因子):具有刺激细胞生长活性的因子。一类通过与特异的、高亲和的细胞膜受体结合,调节细胞生长与其他细胞功能等多效应的多肽类物质
Precursor(前体):某些化合物被加入培养基后能够直接在生物合成过程中结合到产物分子中去,而自身的结构并未发生太大变化,取能提高产物的产量
Accelerant产物促进剂:一类能影响微生物的正常代谢,或促进中间代谢产物的积累,或提高次级代谢产物的产量的物质
Inhibitor抑制剂:一类能抑制某些代谢途径的进行,同时刺激另一代谢途径,以致可以改变微生物的代谢途径的物质
Starch hydrolysis syrup(淀粉水解糖):在工业生产上将淀粉水解成葡萄糖后所制得的糖液称为淀粉水解糖。
主要是葡萄糖
Starch dextrinization/gelatinzation/pasting(淀粉的糊化):淀粉颗粒由于受热吸水膨胀,晶体结构消失,便成糊状液体的现象
Starch thinning(淀粉的液化):利用液化酶使糊化淀粉水解成糊精和低聚糖等,使黏度大为降低,流动性提高
Compound reaction(葡萄糖的复合反应):在淀粉的糖化水解过程中,生生的一部分葡萄糖受酸和热的催化作用,能通过糖苷键聚合,失掉水分子,生成二糖、三糖和其他低聚糖等的反应
Catabolic reaction(葡萄糖的分解反应):在淀粉水解过程中,一部分葡萄糖容易脱水分解成为5-羟基糠醛,后者因性质不稳定而分解成一线丙酸和甲酸等物质叶酸提前多久吃
Sterilize(灭菌):是采用物理或化学方法杀死或出去物料、空气、容器、器具等环境中所有微生物,包括营养细胞、细菌芽孢、和孢子
Heat resistance(热阻):微生物对热的抵抗力,指微生物在某一特定条件下的致死时间
Relative heat resistance(相对热阻):指微生物在某一特定条件下的致死时间与另一微生物在相同条件下的致死时间的比值
Batch sterilization(间歇灭菌):就是将配置好的培养基放在发酵罐或其他装置中,通入蒸汽将培养基和所用设备一起进行加热灭菌的过程
Continuous sterilization(连续灭菌):将配置好的培养基在通入发酵罐时进行加热、保温、降温的灭菌过程
风景的景怎么写Sterilization by airfiltration(空气过滤除菌):空气过滤所用的过滤介质,其间隙一般大于细胞颗粒,空气中的微生物菌体亦可靠气流通过滤层时,基于滤层的层层阻碍,迫使空气在流动过程中出现无数次改变气流速度大小和方向的绕行运动,从而导致微生物微粒于滤层纤维间产生撞击、拦截、布朗运动、重力及静电引力的运动从而把微生物颗粒截留、捕集在纤维表面上,实现过滤的目的
Intensity of respiratory/oxygen quotient(呼吸强度):指单位干菌体在单位时间内所吸取的氧量
Oxygen saturation(耗氧速度):指单位体积的培养液在单位时间内的吸氧量
Critical value of dissolved oxygen concentration(临界氧浓度):指微生物的耗氧速率受对氧浓度的影响,各种微生物对发酵液中溶解氧浓度的最低要求
Optimal synthetic biology oxygen concentration生物合成最适氧浓度:使微生物生长和代谢速率所需的氧最适浓度
Oxygen transfer sfficiency(氧传递效率):在单位时间内,氧气从空气气泡传递到微生物内的量
Microbial fermentation mechanism(微生物发酵机理):微生物通过其代谢活动,利用基质合成人们所需要的产物的内在规律
Metabolic control fermentation(代谢控制发酵):人为地改变微生物代谢调控机制,使用中间代谢产物过量积累。
Biological oxidation(生物氧化):生物氧化就是发生在活细胞内的一系列产能性氧化反应的总称
Constiutive enzyme(组织酶):是菌体生长繁殖所必须的酶系,他的产生一般不受培养基成分影响
Inducible enzyme(诱导酶):是仅当培养基中含有一定量的诱导物时才能形成,以适应底物的特殊需要
Enzyme synthesis repression (酶的合成阻遏):在某些代谢途径中,末端产物过量会阻遏酶的合成由此来调节代谢速率,减少末端产物合成这种现象叫~
Terminal repression(末端代谢产物阻遏):由于某些代谢途径中的末端产物过量积累而引起酶合成的阻遏称为~
Catabo;ite repression(分解代谢产物阻遏):当微生物细胞所处的环境中同时存在可利用的两种底物时,一种先被利用或利用较快的底物会阻遏另一种底物有关酶的的合成
Gluco effect/gluco repression(葡萄糖效应):葡萄糖的分解代谢产物阻遏了分解利用乳糖等其他糖类的有关酶的合成这种阻遏~
Regulatory enzyme(调节酶):是指对代谢途径的反应速度起调节作用的酶,他们的分子一般具有明显的活性部位和调节部位。位于一个或多个代谢途径内的一个关键部位的酶,他的活性可因调节剂结合而改变。有调节代谢反应的功能,调节酶一般可分为别构酶和共价调节酶
Energy charge(能荷):是一个人为设定的,能表示细胞能量状态的参数,是生产或利用高能磷酸根的代谢途径的主要调节因素
Isoenzyme(同工酶):来源于同一种系、机体、或细胞的同一种酶具有不同的形式。催化同一化学反应而化学组成不同的一组酶
Primary metabolite(初级代谢产物):是指微生物生产的,生长和繁殖所必须的物质
Secondary metabolite(次级代谢产物):是指由微生物产生的,与微生物生长和繁殖无关的一类物质
Forked intermadiate metabolite(分叉中间体):糖代谢中间体,即可用来合成初级代谢产物,又可用来合成次级代谢产物的中间体,
十五英语怎么说Glycolysis(糖酵解):葡萄糖经过1,6-二磷酸果糖生成3-磷酸甘油醛,3-磷酸甘油醛再降解生成丙酮酸并产生A TP的代谢过程
Pasture effect9巴斯德效应:再好氧条件下,酵母发酵能力降低的现象。第一个调节点是磷酸果糖激酶,此酶是变构酶,它受ATP柠檬酸及其他高能化合物所抑制,受ADP、AMP激活
fermentation kinetics发酵动力学:是研究各种环境因素与微生物代谢活动之间的相互作用随时间变化的规律的科学。以研究发酵过程的反应速率和环境因素对速率的影响为主要内容。通过发酵动力学的
研究,可进一步了解微生物的生理特征,菌体生长和产物形成的合适条件,以及各种发酵参数之
间的关系,为发酵过程的工艺控制、发酵罐的设计放大和用计算机对发酵过程的控制创造条件
intrinsic kinetics/ mi-crokinetics本征动力学/微观动力学:又称微观动力学、反应固有动力学(相对于表观动力学而言),是指排除流动、传质、传热等传递过程影响条件下的反应动力学,描述化学反应本身的规律。相应的反应速率和速率方程,称为本征反应速率和本征速率方程。
反应器动力学/宏观动力学:
batch fermentation分批发酵:采用单罐深层粉批发酵,机制一次性装入罐内,在适宜条件下接种进行反应,经过一定时间后,将全部反应物取出
fed-batch culture补料分批发酵:是指在分批发酵培养过程中,间歇或连续地补加新鲜培养基
continuous fermentation连续发酵:是在微生物培养到对数生长期时在发酵罐中一方面以一特定速度连续不断地流加新鲜培养基,另一方面又以同样速度连续不断地将发酵液排除,是发酵罐中微生物的生长和代谢活动始终保持旺盛的稳定状态而PH、温度、营养成分浓度、溶解氧等都保持一致,噬菌体维持在恒定生长速率下生长和发酵
turbidostat恒浊器:一种连续培养微生物的装置。可以根据培养液中的微生物的浓度,通过光电系统观控制培养液的流速,从而使微生物高密度的以恒定的速度生长
chemostat恒化器:它以恒定的速度流出培养液,使容器中的微生物生长繁殖始终低于最快生长速度。这种容器反映的是培养基的化学环境恒定
bioreactor生物反应器:利用生物催化剂为细胞培养(或发酵)或酶反应提供良好的反应环境的设备Fermentation dye bacteria发酵染菌:是指在发酵培养过程中侵入了有碍生产的其他微生物
1、发酵过程的特点
答:1)发酵过程通常在常温下进行,一般操作条件比较温和,各种设备不用考虑防爆问题,对设备要求相对较低,还可是一种设备多种用途2)发酵生产所用的原料主要以农产品及其加工产品,属可赛后总结
再生资源3)发酵过程中的反应以生命体的自动调节方式进行数十个反应能像单一反应那样在单一生物器中进行4)发酵工业与其他工业相比,相对投资较少,见效较快具有经济和效能的统一性
2、发酵工业生产流程:
答:1)原料预处理2)培养基的配置3)发酵设备和培养基灭菌4)无菌空气的制备5)菌种的制备和扩大培养6)发酵7)产品及分离提纯工艺
3、发酵工业发展的历史进程、重要历史阶段和典型技术
1)天然发酵阶段,从史前到19世纪酿酒技术
2)纯培养技术的建立,主要为19世纪末到20世纪30年代,德国利斯特‘科赫完成细菌纯培养技术
3)通气搅拌发酵技术建立,1929年开始到1942年青霉素发酵生产成功
4)代谢控制发酵和现代发酵技术的发展,木下祝郎发明代谢控制发酵技术,使谷氨酸发酵生产实现产业化
4、诱变育种的一般过程性及注意事项
答:过程为:1)出发菌株的选择必须了解用作诱变的出发菌株的产量、形态、生理等方面的情况
2)诱变剂的使用方法右边的方法单一诱变剂处理和用两种以上的诱变剂处理菌种的复合诱变剂处理
3)诱变剂的剂量选择对不同微生物诱变剂的使用剂量不同一般突变率随剂量的增加而提高而后再提高则下降
4)突变菌株的筛选筛选要经过初筛和复筛过程才能得到所需的菌株
5、种子应满足的条件:
答:1)菌种的纯种培养物总量适宜,以保证发酵罐中有适当的接种量
2)微生物菌种的生命力旺盛,移接到发酵罐中后能迅速生长利于缩短延滞期,提高发酵设备利用率
3)菌种能保持稳定的生产性能,生理状态稳定
4)无杂菌和噬菌体污染
6、种子质量的判断标准:
1)细胞或菌体细胞种子要求菌体健壮、形态一致、均匀整齐,霉菌和放线菌要求菌丝粗壮,对某些染料着色能力强、生长旺盛,菌丝分支情况和内含物情况良好
2)生化指标种子液的糖、氮、磷含量的变化和PH变化噬菌体生长繁殖、物质代谢的反应3)产物生产种子液中产物的生产量是多种发酵产品发酵中考察种子质量的重要指标
4)酶活力种子液中酶的活力可能与产物的合成能力有一定的关系,
7、种子扩大培养的原因:
纵有万般不舍
答:由于现在发酵工业生产规模越来越大,发酵罐的容积从几十立方米到几百立方米
8、发酵培养基应满足的条件
答:发酵培养基既要使种子接种后能迅速生长,以达到一定的菌体浓度,有要使长好的菌体能迅速合成所需物。因此,发酵培养基的组成除有菌体生长所必需的元素和化合物外,还要有合成产物所需的特定元素、前体和促进剂等
9、发酵培养基的组成有哪些:
1)碳源
秋天的诗句古诗2)氮源分为有机和无机
3)无机盐和微量元素
4)生长因子
5)前体直接在生物合成过程中结合到产物分子中去来促进产物合成
6)产物促进剂一类刺激因子可以影响微生物的正常代谢或促进中间产物的积累,或提高刺激代谢产物的产量
7)抑制剂抑制某些代谢途径的进行,同时刺激另一类代谢途径以致可以改变微生物的代谢途径
10、为什么要进行淀粉水解,水解的方法有哪些?介绍其含义、优缺点
大多数生产菌都不能直接利用或仅微弱利用淀粉,所以必须将淀粉质原料水解为葡萄糖等可发酵性糖类。水解的方法可根据采用的水解催化剂的不同分为:酸水解、酶水解法、酸酶结合水解法。酸水解法以酸为催化剂,在高温高压下将淀粉水解为葡萄糖的方法。优点:该法具有生产工艺简单、设备简易、生产周期短、设备生产能力大等。缺点:对设备要求有耐腐蚀性、耐高温、耐高压,对淀粉原料要求严格必须是精制淀粉,淀粉乳浓度不能过高,而且淀粉副反应较多。酶水解法:利用液化酶使糊
化淀粉水解成糊精和低聚糖等在利用糖化酶将糊精或低聚糖近一步水解为葡萄糖。优点:淀粉水解是在酶的催化下进行,酶解反应条件温和,不需耐高温、耐高压、耐酸的设备,同时反应中不产生腐蚀性物质,对设备要求低;微生物酶的专一性强,效率高,淀粉水解副反应改善了劳动卫生条件;微生物酶的专一性强,效率高,淀粉水解副反应少;可在较高淀粉乳浓度下水解,水解液还原糖含量高;可采用粗原料,省去原料精加工工程可避免原料流失;由于微生物酶制剂中菌体细胞的自溶,是糖衣的营养物质较丰富,简化了发酵培养基。缺点是:生产周期较长;要求的设备较多,设备投资大;由于酶本身是蛋白质,易造成糖液过滤困难。酸酶结合水解法分为酸酶水解法和酶酸水解法。酸酶水解法是以酸为催化剂将淀粉水解成糊精和低聚糖,然后再用糖化酶将其水解成葡萄糖的工艺。优点是:液化速度快,可采用较高的淀粉乳浓度,提高生产效率,

本文发布于:2023-06-21 04:09:39,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/82/1003281.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:发酵   代谢   产物   过程   水解   生长   生产
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图