药理学教案

更新时间:2023-06-19 06:51:08 阅读: 评论:0

第三章药物代谢动力学
[教学内容]
(一)药物的体内过程(吸收、分布、代谢和排泄)
1.药物的吸收(absorption)吸收是指药物从用药部位进入血循环的过程。口服药物吸收后经门静脉进入肝脏,有些药物首次进入肝脏就被肝药酶代谢,进入体循环的药量减少,称为首关消除(first pass elimination)。经过肝脏首关消除过程后,进入体循环的药量与实际给药量的相对量和速度,称生物利用度。
药物的吸收分布及排泄过程中的跨膜转运有多种形式,但多数药物是以简单扩散的物理机制转运,扩散速度除取决于膜的性质、面积及膜两侧的浓度梯度外,还与药物的性质有关。分子小、脂溶性大、极性小、非解离型的药物易通过生物膜。药物的解离度也因其pKa(酸性药物解离常数的负对数)及所在溶液的pH不同而不同。非解离型(分子态)药物可以自由通过生物膜,离子型(解离型)药物不易通过生物膜。
多数药物为弱酸性或弱碱性药物。弱酸性药物在酸性环境中解离少,分子态多,易通过生物膜;弱碱性药物则相反。由于膜两侧pH不同,当分布达平衡时膜两侧的药量会有相当大的差异。
2.药物的分布(distribution)是指药物从血循环系统到达组织器官的过程。影响分布的因素①药物本身的物理化学性质(包括分子大小、脂溶性、pKa等)。②药物与血浆蛋白结合率:结合药不能通过生物膜,只有游离药物才能向组织分布。③组织器官的屏障作用,如血脑屏障、胎盘屏障。④细胞膜两侧体液的pH。如细胞内液pH(约为7.0)略低于细胞外液(约7.4)、弱碱性药在细胞内浓度略高,弱酸性药在细胞外液浓度略高,根据这一原理,弱酸性药苯巴比妥中毒时,用碳酸氢钠碱化血液和尿液可使脑组织中药物向血浆转移,并减少肾小管的重吸收加速自尿排泄。
分布容积(Vd)等于体内总药量(mg)与血药浓度(mg/L)的比值。即Vd=A (mg)/C(mg/L),单位为升(L)。
3.药物的生物转化(biotransformation)又称代谢,是指药物在体内多种药物代谢酶(尤其肝药酶)作用下,化学结构发生改变的过程。
肝脏微粒体的细胞色素P-450酶系统,是肝内促进药物代谢的主要酶系统,简称肝药酶。肝药酶具有活性有限、个体差异大、易受药物的诱导和抑制的特点。
某些药物能增加肝药酶的活性,增加药物的生物转化,称肝药酶诱导剂,反之则称肝药酶的抑制剂。
4.药物的排泄(excretion)排泄是药物从体内排出体外的过程。肾脏是药物排泄的主要器官。原形经肾
脏排泄的药物在肾小管可被重吸收,使药物作用时间延长。重吸收程度受尿液pH影响,应用酸性药或碱性药,改变尿液的pH,可减少肾小管对药物的重吸收。
有些药物如洋地黄毒甙,部分在肝细胞与葡萄糖醛酸结合后,随胆汁排入小肠,在小肠水解后游离药物又被吸收,称肝肠循环(hepato-enteral circulation)。洋地黄毒甙中毒时,可服用消胆胺,消胆胺可与洋地黄毒甙在肠道结合,结合物随粪便排泄,打断肝肠循环。乳汁pH略低于血浆,碱性药物部分可自乳汁排泄。从乳汁排泄量较多的药物应注意对乳儿的影响。
(二).体内药量变化的时间过程
1.时量关系(时效关系)概念及其曲线:以纵座标为浓度,横座标为药后时间,体内药量随时间变化的关系(时量关系),可绘制出一条曲线,称时量曲线。若纵坐标为效应,则药后产生的药效随时间的变化的关系(时效关系)绘制出的曲线,称时效曲线。
2.生物利用度(bioavilability)亦可用口服药物的时量关系曲线下面积(AUC)与静脉注射时时量关系的曲线下面积比值来表示,即F=AUC(口服)/AUC(静脉)×100%
英语ab级考试答案
(三).药物消除动力学
1.一级动力学消除:体内药物按瞬时血药浓度(或体内药量)以恒定的百分比消除,称一级动力学消
除,又称恒比消除。其微分方程式为:dC/dt=-k.C1;积分方程式为:
Ct=Co.e-kt。多数药物以一级动力学消除。
2.零级动力学消除体内药物单位时间内消除恒定的量称零级动力学消除,又称恒量消除。其微分方程式为:dC/dt=-k.C o,积分方程式为:Ct=Co-k部分药物当体内药量超过机体代谢能力时则为零级动力学消除,降至最大消除能力以下时,则按一级动力学消除。
1.清除率(clearan,CL)单位时间内多少容积的药物从体内被消除干净称除率,CL=K.Vd,它与半衰期都是衡量药物从体内消除快慢的指标。
4.连续恒速给药的动力学一级动力学消除的药物,定时定量反复多次给药经5个t1/2后所达到的血药浓度称稳态血浓(Staady state concentration,Css)。此时血药浓度稳定在下一次给药前的谷浓度和药后的峰浓度之间。任何途径给药都需经过5个t1/2达Css,停
止给药经过5个t1/2体内药物基本全部消除。当给药时间间隔为一个t1/2时,首次剂量加倍可立即达到Css。为维持Css所需剂量称维持量(Dm)。立即达到有效血浓所需要的剂量称负荷量(D L)。当给药时间间隔为一个t1/2时,负荷量等于2倍的维持量。
(四)药动学参数的概念、药理学意义及各参数间的相互关系
1.半衰期(t1/2)血浆药物浓度降低一半所需时间称半衰期(t1/2)。
2.消除速率常数(K)单位时间内药物消除的百分速率称消除速率常数。半衰期与
消除速率常数之间的关系可用t1/2=0.693/K来表示。
3..生物利用度(bioavilability,):F=AUC((op))/AUC(iv)x100%
4.清除率(clearan,CL):CL=K.Vd
5.分布容积(Vd)等于体内总药量与血药浓度的比值,即Vd=A(mg)/C(mg/L),
compounds单位为升(L)。它不是一个真实的体积,只能近似的说明药物在体内分布的广狭程度。分布容积大的药物,组织分布广,反之则组织分布少。
(五)房室模型药物进入机体后,从体内消除过程比较复杂。为了形象的描述药物的体内过程,研究人员设计了多种动力学模型。
1.一房室模型即把机体看作一个均一容器,药物进入体内后立即均匀分布。
2.二房室模型把血液循环系统和血流丰富的组织器官为中央室,血流不丰富的组
织器官(如皮肤、肌肉、神经等)为周边室。药物首先进入中央室,进入中央室的药物又向周边室分布,中央室和周边室之间分布达平衡需要一定时间过程。
第四章影响药物作用的因素及合理用药
[教学内容]
一.影响药物作用的因素
(一)药物方面因素包括药物的剂型、联合用药配伍禁忌及药物间的培训班
互作用。两种以上药物联合应用时,效应增强称协同作用,效应减弱称拮抗作用。
临床应选用疗效协同而毒性拮抗的药物配伍应用。
药物在体外配伍直接发生物理或化学的相互作用而影响药物疗效或应用后发生毒性反应称配伍禁忌。
(二)机体方面因素包括
1.年龄小儿特别是新生儿或早产儿,各种生理功能及自身调节功能尚未发育完
全,对药物的反应比成年人更敏感。老年人血浆蛋白量较低,体内水分较少,脂肪
较多,故药物的血浆蛋白结合率低,水溶性药物分布容积小,而脂溶性药物分布容积大。老年人肝肾功能减退,药物消除率下降。另外老年人对许多药物的反应特别敏感。这些因素都会使同样剂量下老年人反应强烈或发生毒性反应
2病理情况同时存在其他疾病也会影响药物的疗效。尤其肝肾功能不足时,药物在肝脏的生物转化及肾排泄功能发生障碍,消除速率变慢,易发生毒性反应,适当延长给药间隔或减少给药量可解决。
sharon
2.其他如性别、遗传异常、心理因素等也会影响药物的作用
4.机体对药物的反应性机体对药物的反应性可因人、因时以及用药时间的长短等
而异。连续用药后机体对药物的反应性降低,需增加剂量才能恢复原效应,称耐受性。病原体及肿瘤细胞等对化学治疗药物的敏感性降低称耐药性,又叫抗药性。短期内反复应用数次后药效降低甚至消失称快速耐受性。长期连续使用某种药物,停药后发生主观不适或出现严重的戒断症状称依赖性。前者是精神依赖,又称习惯性。
后者是物质依赖,停药会出现严重的生理机能紊乱,对机体产生危害,又称成瘾性。
无病情需要而大量长期应用药物称药物滥用。麻醉药品的滥用不仅对用药者危害大,对社会危害也极大。
二.合理用药原则
合理用药应达到既能充分发挥药物疗效,又要避免或减少不良反应。据此提出几条原则:
1.明确诊断,针对适应症选药。
2.根据药理学特点选药。
3.了解和掌握影响药物作用的各种因素。
99宿舍查分4.对因、对症治疗并举。5对病人始终负责,密切观察用药后的反应,及时调整剂量或更换药物。
凸轮轴位置传感器第五章传出神经系统药理概论
第一节传出神经系统的分类
第二节传出神经系统的递质和受体
作用于传出神经系统的药物主要影响作用于传出神经系统的递质和受体的功能,即通过影响递质的合成、贮存、释放、代谢等环节或直接与受体结合产生生物效应。
一、传出神经系统的递质
(一)化学传递学说发展
(二)传出神经突触的超微结构
(三)传出神经递质的生物合成、贮存NA生物的合成主要在神经末梢。酪氨酸进入神经元后,经羟化酶催化生成多巴,再经脱羧酶催化生成多巴胺,进入囊泡由多巴胺β-羟化酶催化,合成为NA,并与ATP和嗜铬颗粒蛋白结合,贮存于此。在整个合成过程中酪氨酸羟化酶是作为一种限速酶。
教师代表讲话ACh的合成主要在胆碱能神经末梢。与其合成有关的酶胆碱乙酰化酶和乙酰辅酶A。胆碱和乙酰辅酶A在胆碱乙酰化酶催化下合成ACh。进而转运至囊泡与ATP和囊泡蛋白并存。
(四)传出神经递质的释放
1、胞裂外排
my favourite book2、量子化释放
3、其他释放机制
共同传递
(五)传出神经递质的消失
Ach作用的消失主要通过被突触间隙的乙酰胆碱酶(AchE)所分解,每一分子的AchE在一分钟内能完成水解105分子的Ach,其中水解产物胆碱可被摄入神经末梢,作为Ach再合成原料。
NA的失活主要依赖于神经末梢的摄取,即为摄取1。释放量的NA约有75-90%被这种方式所摄取。摄取进入神经末梢突触的NA可进一步转运进入囊泡中贮存,即为囊泡摄取。部分未进入囊泡的NA可被胞质液中线粒体膜上的单胺氧化酶(MAO)破坏。许多非神经组织如心肌、血管、肠道平滑肌也可摄取NA即为摄取2。这种摄取方式对NA的摄取量较大,但其亲合力则远低于摄取1。且被摄取2摄入组织的NA并不贮存而很快被细胞内儿茶酚氧位甲基转移酶(COMT)和MAO所破坏,因此可认为,摄取1为贮存型摄取,摄取2为代谢型摄取。
二、传出神经系统的受体
suicide(一)受体命名能与Ach结合的受体称为乙酰胆碱受体。可分为毒蕈碱型胆碱受体(M胆碱受体)和烟碱型胆碱受体(N胆碱受体)。可与NA、AD结合的受体称肾上腺素受体,可分为α肾上腺素受体(α受体)和β肾上腺素受体(β受体)。
(二)受体分型
1、胆碱受体亚型五种亚型:M1、M
2、Mrilkean heart
3、M
4、M5。

本文发布于:2023-06-19 06:51:08,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/78/989120.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:药物   消除   进入   过程   摄取
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图