国内旅游收入的影响因素分析

更新时间:2023-06-12 12:49:46 阅读: 评论:0

国内旅游收入的影响因素分析
引言:
中国是世界上著名的旅游大国,拥有丰富的旅游资源。我国旅游业从1978年改革开放以后,呈现蓬勃发展的趋势。尤其是在推行“黄金周”以后,外出旅游已经成为一种具有共识的潮流,国内旅游得到了全面快速的发展。据世界旅游组织(WTO)预测,到2020年中国将成为世界最大的旅游目的地和第四位的旅游客源产生地。旅游业已成为全球经济中发展势头最强劲和规模最大的产业之一。
一、问题的提出
旅游业在城市经济发展中的产业地位、经济作用逐步增强,旅游业对城市经济的拉动性、社会就业的带动力、以及对文化与环境的促进作用日益显现。然而,旅游业的如此快速的发展,到底是何种因素在起推动作用?该如何预测未来时间里旅游业的前景方向呢?本文将从定量的角度,采用现有的统计数据,运用回归分析的方法,来研究我国目前国内旅游市场规模的影响因素,弄清在目前的社会经济下,影响我国国内旅游市场的各主要因素及其影响程度。并在此基础上,对国内旅游市场的规模进行科学的预测。
二、理论综述
国内目前关于居发旅游消费的研究中,主要以定性研究为主。比较有代表性的研究如下:许春晓(1999)通过对中国旅游消费的状况进行分析和评论,指出今后旅游消费的研究方向之一是旅游消费典型现象的研究;颜绍梅(2001)从宏观上探讨了中国旅游消费的运行特征,提出了可持续性旅游消费的建议;谷慧敏和伍来春(2003)从居发收入分配及其结构演变的角度,对中国改革开放20多年的国内旅游消费的特征进行了理论分析;尹世杰(2003)指出了我国旅游消费发展中的情况和存在问题,并提出了未来促进我国旅游消费的措施。
至于旅游消费定量研究的文献,大部分则是从局部影响因素出发。李银兰和范红(2002)利用1993—1998年的统计数据,分析了我国城镇居民国内旅游消费支出与可自由支配收入之间的关系,但未能把价格指数的因素纳入到研究范畴中;张立生则(2004)则主要从交通条件分析。
综上,我们得出启示,纳入多方面的影响因素,从交通条件和环境条件及居民消费水平方面综合考虑,建立模型分析对国内旅游收入的影响。
三、影响因素的分析
1、人均可支配收入
可支配收入是衡量购买能力的重要指标,可支配收入是指人们从事社会经济活动而得到的个人收入扣除所得税的余额,是自己可以自由决定其用途的收入。随着经济的发展和社会的进步,人们的收入不断增加,生活水平逐步提高,人们在基本生存需要满足之后,将会把追求目标转移到精神方面去,会不断建立良好、和谐的人际关系,来完善和发展自己。现在,一些发达国家,人们已经把旅游看作现代生活方式中必不可少的重要组成部分。因此,本文选择人均可支配收入作为一个指标。
2CPI
CP I反映了与居民生活有关的产品及劳务价格统计出来的物价变动指标,同时也必然影响到出游者消费的增长,从而增加旅游收入。
3、国内旅行社数
旅行社作为旅游业的三大支柱之一,与旅游业有着极其紧密的联系。当前的旅行社数目既受旅游产业发展的直接影响,同时它也反映出我国旅游产业的发展水平。因此,在对旅游产业影响因素进行分析时,国内旅行社数必须作为一个重要解释变量加以分析。
4、国内旅游人数
1994年到2005年这十余年间,国内旅游总人次从524百万人次增加到1212百万人次增加到六倍左右;国内旅游总收入从1023.5亿元,增加到5285.86亿元增加到五倍左右。说明两者之间有很大的相关性。
5、城乡居民年底存款余额
为反映我国人民生活水平与国内旅游收入之间的关系,我们选取城乡居民年底存款余额指标。从数据可以看出,我国城乡居民年底存款余额2005年达到141051亿元,是1994年的6.55倍。而同期国内旅游收入达到5286亿元,为1994年的5.16倍。经相关分析,发现两者之间的相关系数为0.969。可见,国内旅游收入与城乡居民年底余额呈正相关,即人民生活水平的提高促进了国内旅游收入的增长。
6、交通里程
很长一段时间以来,我国办旅游业的发展都受到了交通条件的制约。随着经济的发展,我国的交通条件也得到了很大的提高,同时给旅客的出行提供了很大的方便。因此选择交通里程这一指标作为影响旅游收入的一个指标。
四,数据的收集
本文获取了1994年到2005年的数据如下表一所示。
表一 1994年到2005年的统计数据
北京英孚少儿英语彩霞的英文would like的用法
Y
X1
X2
X3
英语六级考试查询X4
X5
X6
1994
1023.51
2358.6
258.6
3399
524
21518.8
184.7088
1995
1375.7
2930.35
302.8
2821
629
29662.3
196.241
1996
1638.4
3382.5
327.9
3275
639.5
38520.8
198.8788
1997
2112.7
3625.2
337.1
3995
644
46279.8
219.4893
1998
2391.2
3793.55
334.4
4910
695
53407.5
233.0214
1999
2831.9
4032.16
329.7
6070
719
59621.8
240.8544
2000
3175.5
4266.7
331
7725
744
64332.4
245.5838
2001
3522.4
4613
333.3
9222
784
73762.4
279.3816
2002
3878.4
5089.2
330.6
10203
878
86910.6
288.7968
2003
3442.3
5547.2
334.6
11997
870
103617.3
290.4522
2004
4710.7
6179
347.7
13467
1102
119555.4
308.6934
2005
5285.86
6873.95
353.9
16348
1212
141051
313.5269
资料来源:v
          192.168.30.168:81/
          www.pinggu/bbs/index.asp
注:Y为中国国内旅游收入,单位为亿元
  x1为人均可支配收入,单位为元
  x2为消费价格指数,以1985年为基年
  x3为国内旅社数,单位为个
  x4为国内旅游人数,单位为百万人次
  x5为城乡居民年底存款余额,单位为亿元
  x6为交通里程,单位为万公里
由中国国情决定,中国的旅游业在过去的几十年里发展的相当缓慢,到近几年才快速发展起来。因此直到1994年才有与旅游收入相关的统计数据,这直接导致我们研究问题的样本量不足的问题。
五、模型的估计与调整
1、检验多重共线性
1)分别做y和各个解释变量的散点图,我们发现各个解释变量与y都是近似的线性关系,因此我们设定模型为
                y=c+c1*x1+c2*x2+c3*x3+c4*x4+c5*x5+c6*x6
EViews的最小二乘估计结果见表二
规定英文
Dependent Variable: Y
Method: Least Squares
Date: 12/16/07  Time: 20:27
Sample: 1994 2005
Included obrvations: 12
Variable
Coefficient
Std. Error
t-Statistic
Prob. 
C
-8383.433
2211.025
-3.791650
0.0127
X1
-1.427166
1.667962
-0.855634
0.4313
X2
24.87071
13.72040
1.812681
0.1296
X3
0.376346
0.190880
1.971636
0.1057
X4
4.800825
1.846466
2.600007
0.0482
X5
-0.014566
0.044721
-0.325708
0.7578
X6
15.12889
7.619128
1.985646
0.1038
R-squared
0.987928
    Mean dependent var
2949.047
Adjusted R-squared
0.973441
    S.D. dependent var
1313.443
S.E. of regression
214.0499
    Akaike info criterion
13.86149
Sum squared resid
229086.8
    Schwarz criterion
14.14436
Log likelihood
-76.16896
    F-statistic
68.19606
Durbin-Watson stat
2.483285
    Prob(F-statistic)
0.000124

从表一可以看出,除了x4的系数通过检验,其他解释变量的系数都未通过检验。可见上述模型不是太好,我们可将模型设定如下
Y=clogy=c+c1*logx1+c2*logx2+c3*logx3+c4*logx4+c5*logx5+c6*logx6
EViews的最小二乘估计结果见表三:
表三 EViews的最小二乘计算结果
moden
Dependent Variable: LOG(Y)
Method: Least Squares
Date: 12/16/07  Time: 19:11
Sample: 1994 2005
Included obrvations: 12
Variable
Coefficient
Std. Error
t-Statistic
Prob. 
C
-16.77757
5.632615
-2.978646
reliable
0.0308
LOG(X1)
-2.619456
1.491743
-1.755970
0.1394
LOG(X2)
4.291464
1.158825
3.703288
0.0140
LOG(X3)
0.825338
0.315038
2.619803
0.0471
LOG(X4)
0.924662
0.499018
1.852963
0.1231
LOG(X5)
0.269979
0.867549
0.311198trashed
0.7682
LOG(X6)
0.964413
0.738222
1.306399
0.2483
R-squared
0.992832
    Mean dependent var
呼和浩特农大附小
7.884227
Adjusted R-squared
voiceofamerica0.984230
    S.D. dependent var
0.501562
S.E. of regression
0.062986
    Akaike info criterion
-2.400614
Sum squared resid
0.019836
    Schwarz criterion
-2.117751
Log likelihood
21.40368
    F-statistic
115.4196
Durbin-Watson stat
2.874831
    Prob(F-statistic)
0.000034
由上表可知,有些解释变量的系数的t统计量有所增加,即模型有所改进。回归系数和修正的回归系数都很高,F统计量也很显著。我们猜想上述模型存在多重共线性。则由软件求得个解释变量的相关系数如表四:

本文发布于:2023-06-12 12:49:46,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/78/937296.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:旅游   收入   消费   影响   分析   旅游业
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图