除了DNA甲基化和组蛋白修饰外,表观遗传修饰还有染色质重塑、基因组印记、非编码RNA和副突变等。研究表明,表观遗传修饰过程是相当复杂的,许多修饰存在着依赖关系和协同作用[4]。比如,组蛋白修饰可以指导DNA甲基化[5-7],从而导致基因沉默或激活。同时,DNA甲基化也可引导组蛋白修饰[8-9],进而影响基因转录等。
2 灵活性
国内上网课不影响留学生学历认证由于化学修饰比改变基因结构更快捷、更容易,所以相对于稳固的基因型遗传来说,表观遗传则具有更大的灵活性。这为生物快速适应千变万化的环境提供了一种适宜的应变机制。最新的研究发现,古生物能够适应快速变化的环境所依赖的正是表观遗传修饰。在距今3万年前,全球气候波动频繁,短时间内便可出现巨大起伏。按照传统的“基因突变+自然选择”的进化模式,生物肯定难以跟上这么快的节奏,然而事实上绝大多数生物都能够快速地适应这种巨大的气候变化压力而不至于灭绝,这其中的秘密就在于表观遗传修饰。Llamas et al[10]通过对冻土层中发掘出的3万年前美洲野牛的DNA胞嘧啶甲基化分析,发现这一时期野牛的表观遗传变化在2代内即可产生,也就是说,产生可遗传变异所需的时间远低于传统进化模式所需要的时间。这一结果表明,是表观遗传修饰帮助古代的动物度过scer
了环境巨变的难关。具有土生习性的植物,由于难于移动,其生长、发育和繁殖更容易遭受逆境(如干旱、病虫侵袭和辐射等)胁迫影响。面对各种逆境压力,植物应变的对策也是表观遗传修饰。美国学者Dowen et al[11]研究发现,植物在受到病菌侵袭时,其全基因组会出现大量DNA甲基化修饰的改变,并且这种甲基化修饰会因环境刺激的变化而变化,以动态的方式调控基因表达,限制感染病菌的生长,帮助植物抵御病菌的入侵。表观遗传与环境密切相关,所以植物表观基因组存在明显的地域差异[12],这种表观遗传差异在帮助生物适应不同的环境和向多样性发展方面发挥着至关重要的作用。
3 习得性
表观遗传修饰有2个明显特征:一是受环境影响,生物可以通过表观遗传修饰来改变性状;二是这些与环境相适应的表型(性状)可以遗传下去。这2个特征所表现出的获得性遗传,为生物的多样性和种群的适应性演化提供了一种习得性进化机制。最早关于DNA甲基化的可遗传特性是通过agouti viable yellow(Avy)小鼠模型研究发现的。该研究确定了一个启动子被甲基化的程度与小鼠的毛色(即棕色小鼠)的关联性[13-14]。英国学者Enrico Coen及其同事[15]发现,在野生植物群体中存在可遗传的具甲基化修饰的突变株。一种名
为柳穿鱼的野生植物的正常植株的花呈两侧对称状。Enrico Coen et al在研究中发现了一种突变体,该突变体的花呈辐射对称状,而这一表型突变是由一个叫Lcyc的基因被甲基化修饰导致的,该基因与控制金鱼草(Antirrhinum)的背腹不对称的cycloidea基因同源。Lcyc的基因高度甲基化导致基因沉默,无法正常转录,这一基因在向后代传递时保持了甲基化状态,后代植株的花也呈辐射对称状。Rechavi et al[16]在一项研究中发现,表观遗传能够帮助线虫获得可遗传的免疫力。他们利用一种昆虫病毒Flock hou virus(FHV)感染线虫,发现线虫通过RNA干扰的方式沉默病毒基因从而获得了针对这一病毒的免疫力。当这些线虫的后代再暴露在这类病毒中时,它们仍然具有对病毒的免疫力。[11] DOWEN R H,PELIZZOLA M,SCHMITZ R J,et al.Widespread dynamic DNA methylation in respon to biotic stress[J].Proc Natl Acad Sci U S A,2012,109(32):2183-2191.
[12] SCHMITZ R J,SCHULTZ M D,URICH M A,et al.Patterns of population epigenomic diversity author[J].Nature,2013,495(10):193-198.
headache[13] DUHL D M,VRIELING H,MILLER K A,et al.Neomorphic agouti muta-tions in obe yellow mice[J].Nat Genetm,1994(8):59-65.
slipped[14] MICHAUD E J,VAN VUGT M J,BULTMAN S J,et al.Differential expre-ssion of a new dominant agouti allele(Aiapy)is correlated with methylation state and is influenced by parental lineage[J].Genes Dev,1994,8(12):1463-1472.
boy george[15] COLNEY LANE,NORWICH NR4 7UH,UK.An epigenetic mutation (下转第252页)
(上接第249页)
responsible for natural variation in floral symmetry[J].Nature,1999,401(6749):157-161.
[16] RECHAVI O,MINEVICH G,HOBERT O.Transgenerational inheritance of an acquired small RNA-bad antiviral respon in C. elegans[J].Cell,2011,147(6):1248-256.
wonderful world[17] BRAUNSCHWEIG M,JAGANNATHAN V,GUTZWILLER A,et al.Inv-estigations on transgenerational epigenetic respon down the male line in F2 pigs[J].PLOS ONE,2
012,7(2):30583.smilence
灵犀相通[18] HEIJMANS B T,TOBI E W,STEIN A D,et al.Persistent epigenetic diff-erences associated with prenatal exposure to famine in humans[J].Proc Natl Acad Sci U S A,2008,105(44):17046-17049.
[19] CARONE BR,FAUQUIER L,HABIB N,et al.Paternally induced trans-generational environmental reprogramming of metabolic gene expression in mammals[J].Cell,2010,143(7):1084-1096.
[20] SHEN J C,RIDEOUT W M,JONES P A.The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA[J].Nucleic Acids Res,1994(22):972-976.
[21] WEN-HSIUNG L I.Kimura’s Contributions to Molecular Evolution[J].theoretical population biology,1996(49):146-153.
[22] WEINBERG M S,VILLENEUVE L M,EHSANI A,et al.The antin strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in h
uman cells[J].RNA,2006(12):256-262.