摘 slept要
钢铁工业作为国民经济的支柱产业,对国民经济的发展起到重要的主导地位。而作为钢铁工业上游主体工序的高炉炼铁,是钢铁工业的重要组成部分,对炼钢工业的发展与降耗节能都有重要的影响地位。高炉炉温是高炉顺行的保证,也是判断高炉炉况的一个重要指标。如何建立能指导高炉炼铁人员进行炉温控制的炉热状态预报模型不仅具有重要的理论价值,而且也具有重要的生产实践价值。但是由于高炉冶炼过程的复杂性,实现高炉冶炼过程的自动化是20世纪下半世纪以来冶金自动化领域一直难以攻克的难题,也是实际生产中工长和厂长都十分关注的主要课题。对炉温的准确预报,将有助于工长提高炼铁操作水平,从而达到提高高炉利用系数和降低焦比的目的。对高炉炉温进行预测和控制并最终实现高炉冶铁过程的智能控制是当代冶金科技发展的前沿课题。
从控制论的角度来看,高炉炼铁是一个复杂的过程,其运行机制常常带具有非线性、大噪声、分布参数等特征,在建模方面有很大的困难。尤其是炉温的表达,难度更是很大。BP神经网络是一种自学习的网络,它能较好地解决非线性、大噪声问题。目前已被广泛应用于模式识别、函数逼近、预测控制等领域。本文利用BP神经网络的优点,提出使用BP2014河北高考状元神
经网络来建立高炉炉温预测模型。并且在解析高炉炼铁原理及过程复杂性的基础上,分析高炉铁水温度和高炉铁水雅虎翻译在线[Si]含量之间的相关性,结合国内江苏联峰钢厂高炉的实际情况提出了以化学热-铁水含硅[Si]服装经营技巧量代替物理热来判断炉温的变化。
论文简单介绍了江苏联峰钢厂炼铁高炉的现场设备、冶炼工艺、生产数据的获取及储存情况,着重分析了各工艺参数的相关性,得出高炉炼铁过程状态变量(料速、透气性、上一炉铁水硅含量[Si]、铁量差)和控制参数(喷煤量、风温、风量tpm是什么意思)与高炉铁水含硅量[Si]之间的相关性,同时结合BP神经网络模型的特点,确定建立高炉炉温预测模型的工艺参数。在高炉众多的传感器中由于原料装入的波动等因素不可避免地会产生一些干扰信号使从数据采集系统获得的数据往往叠加有噪声,为了提高数据处理的精度必须除去这些随机噪声,故本文对输入模型的参数数据进行了预处理。
为了解决BP神经网络易于陷入局部最小值的缺陷,本文提出了采用混沌粒子群优化算法提高BP神经网络的搜索能力。结果表明:基于混沌的粒子群优化算法(Chaos Particle Swarm Optimization-CPSO)收敛速度快,具备收敛概率和搜索精度;然后提出了基于CPSO算法来训练BP神经网络,依此来提高网络训练效果。最后建立基于CPSO-BP神经网络的高炉
炉温动态预报模型;同时利用在线采集的2厂hanging out4#高炉预处理过的样本数据对模型进行仿真实验,实验结果表明,CPSO-BP蜜粉刷网络对高炉铁水含量预报的精度要高于标准的环球网校造价师BP网络,此精度完全可以满足实际生产的需要,并且离线测试表明此模型具有很高的命中率,达到建模预期的效果,从而可以帮助高炉工长调控高炉参数,实现对高炉炉温的预测控制,提高铁水产量和经济效益。
论文的最后对论文课题所做的工作进行了总结,指出了其中的不足之处,同时展望了论文课题下一阶段所要做的工作。
关键词:高炉,混沌粒子群优化算法,铁水硅含量,BP神经网络,预测控制模型
ABSTRACT
Iron and steel industry is the pillar industry of national economy. As the upstream of the main process of iron and steel industry, blast furnace is an important part of iron and steel industry. It impacts the steel industry's development and saving energy strongly. 高炉炉温是高炉顺行的保证,也是判断高炉炉况的一个重要指标。Th
i shall return
e temperature of blast furnace ensures blast furnace anterograde, it also is an important indicator of determines the state of blast furnace. H如何建立能指导高炉炼铁人员进行炉温控制的炉热状态预报模型不仅具有重要的理论价值,而且也具有重要的生产实践价值。HHHHHow to build furnace thermal state prediction model of guidance on blast furnace personnel temperature-controlled not only has important theoretical value, but also has important practical value of production. 但是由于高炉冶炼过程的复杂性,实现高炉冶炼过程的自动化是20世纪下半世纪以来冶金自动化领域一直难以攻克的难题,也是实际生产中工长和厂长都十分关注的However, due to the complexity of the process of blast furnace, in the after half of 20th century, blast furnace smelting process realize automation has been difficult to overcome the field of metallurgical automation of the problem as well as actual production foreman and manager are very concerned about the main topics. 对炉温的准确预报,将有助于工长提高炼铁操作水平,从而达到提高利用系数和降低焦比的目的。The accurate prediction of the furnace temperature will help to improve the foreman iron-smelting operations level so as to improve the utilization factor and reduce the coke rate purpos. Forecasting and control of 对高炉炉温进行预测和控制并最终实现高炉冶铁过程的智能控制是当代冶金科技发展的前沿课题。blast furnace temperature and the eventual realization of intelligent control of the process of blast furnace smelting iron is contemporary metallurgy technological development forefront topics.
从控制论的角度来看,高炉炼铁是一个复杂的过程,其运行机制常常带具有非线性、大噪声、分布参数等特征,在建模方面有很大的困难。 From the control theory point of view, the blast furnace is a complex process, large noi and its operating mechanism is often with non-linear. The distribution of parameters
characteristic of the modeling have great difficulties. 尤其是炉温的表达,难度更In particular, the expression of furnace temperature, the difficulty is even more significant. BP神经网络是一种自学习的网络,它能较好地解决非线性、大噪声问题BP neural network is a lf-learning network. It can better solve problem of the non-linear and big noi. 目前已被广泛应用于模式识别、函数逼近、预测控制等领Now it has been widely ud in pattern recognition, function approximation, predictive control and other fields. 本文利用BP神经网络的优点,提出使用BP神经网络来建立高炉炉温预测模型。In this paper, using the advantages of BP neural network propod using the BP neural network to establish a blast furnace temperature prediction models. 并且在解析高炉炼铁原理及过程复杂性的基础上,分析高炉铁水温度和高炉铁水[Si]含量之间的相关性,结合国内江苏联峰钢厂高炉的实际情况提出了以化学热-铁水含硅[Si]量代替物理热来判断炉温的变化,And bad on analysizing theory and process of blast furnace complex, the analysized correlation of blast furnace hot metal temperature and silicon [Si] content. Combination blast furnace actual situation of Jiangsu LianFeng steel group, Proposing using chemical heat - hot metal Silicon [Si] content instead of the physical heat to determine changes of the furnace
论文简单介绍了江苏联峰钢厂炼铁高炉的现场设备、冶炼工艺、生产数据的获取及储存情况,着重分析了各工艺参数的相关性,同时结合BP神经网络模型的特点,得出高炉炼铁过程状态变量(料速、透气性、上一炉铁水含硅量[Si]、铁量差)和控制参数(喷煤、风温、风量)与高炉铁水含硅量[Si]之间的相关性,确定建立高炉炉温预测模型的工艺参数。 Paper introduced briefly the situation in field equipment, smelting process, production data acquisition and storage of blast furnace of Jiangsu LianFeng steel group. Focusing on analysis of the correlation of various process parameters, derived the correlation between blast furnace smelting Iron state variables (raw material rate, air permeability, la
st furnace hot metal silicon content [Si], Difference of Fe content),control parameters (amount of pulverized coal injection, air temperature, air volume) and the amount of hot metal silicon content [Si].And combined with BP network model of characteristics established a prediction model of blast furnace process parameters. 在高炉众多的传感器中由于原料装入的波动等因素不可避免地会产生一些干扰信号使从数据采集系统获得的数据往往叠加有噪声,为了提高数据处理的精度必须除去这些随机噪声,故本文对输入模型的参数数据进行了预处理。迈锐宝广告歌曲In a large number of nsors in the blast furnace, duing to such factors, such as the volatility of raw materials loading, some interference signal has been produce from the data acquisition system inevitably produce. So that the data obtained are often superimpod with noi. In order to improve the accuracy of data processing to remove the random noi. And this paper input parameters of the model data pretreatment.