光伏系统中蓄电池的充电保护IC电路设计
1.引言
太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。太阳能发电已经在很多国家和地区开始普及,太阳能照明也已经在我国很多城市开始投入使用。作为太阳能照明的一个关键部分,蓄电池的充电以及保护显得尤为重要。由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠,在电池的整个寿命期间电压稳定且不需要维护等优点,所以在各类需要不间断供电的电子设备和便携式仪器仪表中有着广泛的应用。采用适当的浮充电压,在正常使用(防止过放、过充、过流)时,免维护铅酸蓄电池的浮充寿命可达12~16年,如果浮充电压偏差5%则使用寿命缩短1/2。由此可见,充电方式对这类电池的使用寿命有着重大的影响。由于在光伏发电中,蓄电池无需经常维护,因此采用正确的充电方式并采用合理的保护方式,能有效延长蓄电池的使用寿命。传统的充电和保护IC是分立的,占用而积大并且外围电路复杂。目前,市场上还没有真正的将充电与保护功能集成于单一芯片。针对这个问题,设计一种集蓄电池充电和保护功能于一身的IC是十分必要的。
2.系统设计与考虑
系统主要包括两大部分:蓄电池充电模块和保护模块。这对于将蓄电池作为备用电源使用的场合具有重要意义,它既可以保证外部电源给蓄电池供电,又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护,将充电和保护功能集于一身使得电路简化,并且减少宝贵的而积资源浪费。图1是此Ic在光伏发电系统中的具体应用,也是此设计的来源。
免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命,影响蓄电池寿命的因素有充电速率、放电速率和浮充电压。某些厂家称如果有过充保护电路,充电率可以达到甚至超过2C(C为蓄电池的额定容量),但是电池厂商推荐的充电率是C/20~C/3。电池的电压与温度有关,温度每升高1℃,单格电池电压下降4 mV,也就是说电池的浮充电压有负的温度系数-4 mV/℃。普通充电器在25℃处为最佳工作状态;在环境温度为0℃时充电不足;在45℃时可能因严重过充电缩短电池的使用寿命。要使得蓄电池延长工作寿命,对蓄电池的工作状态要有一定的了解和分析,从而实现对蓄电池进行保护的目的。蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态。但是由于不同的过放电电流对蓄
电池的容量和寿命所产生的影响不尽相同,所以对蓄电池的过放电电流检测也要分别对待。当电池处于过充电状态的时间较长,则会严重降低电池的容量,缩短电池的寿命。当电池处于过放电状态的时间超过规定时间,则电池由于电池电压过低可能无法再充电使用,从而使得电池寿命降低。
根据以上所述,充电方式对免维护铅酸蓄电池的寿命有很大影响,同时为了使电池始终处于良好的工作状态,蓄电池保护电路必须能够对电池的非正常工作状态进行检测,并作出动作以使电池能够从不正常的工作状态回到通常工作状态,从而实现对电池的保护。
3.单元模块设计
3.1充电模块
芯片的充电模块框图如图2所示。该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路。
该模块内含有独立的限流放大器和电压控制电路,它可以控制芯片外驱动器,驱动器提供的输出电流为20~30 mA,可直接驱动外部串联的调整管,从而调整充电器的输出电压与
电流。电压和电流检测比较器检测蓄电池的充电状态,并控制状态逻辑电路的输入信号。当电池电压或电流过低时,充电启动比较器控制充电。电器进入涓流充电状态,当驱动器截止时,该比较器还能输出20 mA左右,进入涓流充电电流。这样,当电池短路或反接时,充电器只能以小电流充电,避免了因充电电流过大而损坏电池。此模块构成的充电电路充电过程分为二个充电状态:大电流恒流充电状态、高电压过充电状态和低电压恒压浮充状态。充电过程从大电流恒流充电状态开始,在这种状态下充电器输出恒定的充电电流。同时充电器连续监控电池组的两端电压,当电池电压达到转换电压过充转换电压Vsam时,电池的电量己恢复到放出容量的70%~90%,充电器转入过充电状态。在此状态下,充电器输出电压升高到过充电压中学生夏令营Voc,由于充电器输出电压保持恒定不变,所以充电电流连续下降。当电流下降到过充中止电流Ioct时,电池的容量己达到额定容量的100%,充电器输出电压下降到较低的浮充电压VF。
3.2保护模块
芯片内部保护电路模块框图如图3所示。该电路包括控制逻辑电路、取样电路、过充电检测电路、过放电检测比较器、过电流检测比较器、负载短路检测电路、电平转换电路和基准电路苹果道歉(BGR)。
此模块构成的保护电路如图4所示。当芯片的供电电压在正常工作范围内,且VM管脚处的电压在过电流I检测电压之下,则此时电池处于通常工作状态,芯片的充放电控制端CO和DO最快学习英语的方法均为高电平,这时芯片处于通常工作模式。而当电池放电电流变大,会引起VM管脚处的电压上升,若VM管脚处的电压在过电流检测电压Viov之上,则此时电池处于过电流状态,如果这种状态保持相应的过电流延时时间tiov,芯片禁止电池放电,这时充电控制端CO为高电平,而放电控制端DO为低电平,芯片处于过电流模式,一般为了对电池起到更加安全合理的保护,芯片会对电池的不同过放电电流采取不同的过放电电流延时时间保护。一般规律是过放电电流越大,则过放电电流延时时间越短。当芯片的供电电压在过充电检测电压之上(Vdd>Vcu)时,则电池处于过充电状态,如果这种状态保持相应的过充电延时时间tcu芯片将禁止电池充电,此时放电控制端DO为高电平,而充电控制端CO为低电平,芯片处于过充电模式。当芯片的供电电压在过放电检测电压之下(Vdd<Vdl),则此时电池处于过放电状态,如果这种状态保持相应的过放电延时时间tdl,芯片将禁止电池放电,此时充电控制端CO为高电平,而放电控制端DO为低电平,芯片处于过放电模式。
jingle bells英文歌词4.电路设计
由两个充电与保护模块结构图可将电路分为四部分:电源检测电路(欠压检测电路)、偏置电路(取样电路、基准电路以及偏置电路母亲节快乐用英语怎么说)、比较器部分(包括过充电检测比较器/过放电检测比较器、过流检测比较器和负载短路检测电路)及逻辑控制部分。
文中主要介绍欠压检测电路设计(图5) ,并给出带隙基准电路(图6) 。
蓄电池的充电、电压的稳定尤为重要,欠压、过压保护是必不可少的,因此通过在芯片内部集成过压、欠压保护电路来提高电源的可靠性和安全性。并且保护电路的设计要简单、实用,此处设计了一种CMOS工艺下的欠压保护电路,此电路结构简单,工艺实现容易,可用做高压或功率集成电路等的电源保护电路。
欠压保护的电路原理图如图5所示,共由五部分组成:偏置电路、基准电压、分压电路、差分放大器、输出电路。本电路的电源电压是10V;M0,M1,M2,R0是电路的偏置部分,给后级电路提供偏置,电阻Ro决定了电路的工作点,M0,M1,M2组成电流镜;R1皮肤怎样补水,M14是欠压信号的反馈回路;其余M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14组成四级放大比较器;M15,DO产生基准电压,输入比较器的同相端,固定不变(V+),分压电阻R1,R2,R3输入到比较器的反相端,当电源电压正常工作时,
反相端的欠压检测输给比较器的反相端的电压大于V+。比较器输出为低,M14截止,反馈电路不起作用;当欠压发生时,分压电阻R1,R2,R中文翻译成法语3反应比较敏感,当电阻分压后输给反相端的电压小于V,比较器的输出电压为高,此信号将M14开启,使得R两端的电压变为M两端的饱和电压,趋近于0V,从而进一步拉低了R1>R2分压后的输出电压,形成了欠压的正反馈。输出为高,欠压锁定,起到了保护作用。
youth青春
5.仿真模拟结果与分析
本设计电路采用CSMC 0.6 μm数字CMOS新概念英语第二册课文工艺对电路进行仿真分析。在对电路做整体仿真时,主要观察的是保护模块对电池的充放电过程是否通过监测Vdd电位和Vm电位而使芯片的CO端和DO端发生相应的变化。图7所示的整体仿真波形图是保护模块随着电池电压的变化从通常工作模式转换到过充电模式,然后回到通常工作模式,接着进入过放电模式,最后再回到通常工作模式。由于本设计处于前期阶段,各个参数还需要优化,只是提供初步的仿真结果。
6.结论
设计了一种集蓄电池充电与保护功能于一身的IC。利用此设计既可以减小而积,又可以减少外围电路元器件。电路同时采用了低功耗设计。由于此项目正在进行设计优化阶段,完整的仿真还不能达到要求,还需要对各个模块电路进行优化设计。
英语招聘广告
英语原文
Design of a Lead-Acid Battery Charging and Protecting IC in Photovoltaic System
1.Introduction
Solar energy as an inexhaustible, inexhaustible source of energy more and more attention. Solar power has become popular in many countries and regions, solar lighting has also been put into u in many cities in China. As a key part of the solar lighting, battery charging and protection is particularly important. Sealed maintenance-free lead-acid battery has a aled, leak-free, pollution-free, maintenance-free, low-cost, reliable power supply during the entire life of the battery voltage is stable and no maintenance, th
e need for uninterrupted for the various types of has wide application in power electronic equipment, and portable instrumentation. Appropriate float voltage, in normal u (to prevent over-discharge, overcharge, over-current), maintenance-free lead-acid battery float life of up to 12 ~ 16 years float voltage deviation of 5% shorten the life of 1/2. Thus, the charge has a major impact on this type of battery life. Photovoltaic, battery does not need regular maintenance, the correct charge and reasonable protection, can effectively extend battery life. Charging and protection IC is the paration of the occupied area and the peripheral circuit complexity. Currently, the market has not yet real, charged with the protection function is integrated on a single chip. For this problem, design a t of battery charging and protection functions in one IC is very necessary.