曹则贤跨年演讲:什么是量子力学?∣贤说八道
1900~1928年间是物理学史上最激动人心的时代,一群天才,主要是年轻人,在不到三十年的时间里构造了崭新的量子力学体系,从而改变了物理学的面貌,也彻底地改变了人类社会的面貌。本报告系统地解释了什么是量子(quantum)、什么是力学(mechanics), 在对量子力学创建过程的回顾中讲述构成量子力学的具体内容,然后介绍几例量子力学带来的新技术,最后还会谈谈如何学习量子力学的问题。量子力学从来都不是什么革命,它只是经典物理学自然的、逻辑的延续。量子力学一如物理学的其它分支,都是人类思想智慧的结晶。量子力学,还有相对论,这些百年前的头脑风暴,今天应该成为受教育者的知识标配。
2019年12月30日晚,中科院物理所研究员曹则贤在物理所做跨年科学演讲《什么是量子力学?》,本文为演讲人亲自撰写的文字稿。看视频请戳页面左下角蓝字「阅读原文」。
撰文 ∣ 曹则贤(中科院物理所研究员)
内容提要
a.为什么要学习量子力学 ?
b.什么是量子(quantum)?啥是力学(mechanics)?
c.量子力学是什么样的学问?
d.量子力学是如何创立的?
e.量子力学的威力
f.如何学习量子力学
尊敬的各位来宾,屏幕前的各位朋友,女士们、先生们,这里是中关村南三街8号中国科学院物理研究所,我是物理所职工曹则贤。接下来我想和大家聊一个比较高大上的话题:什么是量子力学?具体地,我会聊一聊我们为什么要学习量子力学,什么是量子 (quantum) ,啥是力学 (mechanics) ,量子力学是什么样的学问,通过对量子力学创立过程的回顾介绍量子力学具体的内容,通过几个例子谈谈量子力学的威力,最后作为结束语我会谈谈如何学习量子力学。在回顾量子力学创立过程中涉及的人物包括黎曼、玻尔兹曼、巴尔末、普朗克、爱因斯坦、索末菲、里兹、玻尔、海森堡、约当、玻恩、德布罗意、康普顿、德拜、薛定谔、泡利、狄拉克、冯诺依曼、维格纳、外耳、玻色,等等。许多人会说量子力
学很难学,可我要说的是首先量子力学不难学;其次,再难学也要学。大家可能注意到了,此刻我站在这里讲,世界的很多角落里有人在拿手机看直播。这在几年前都是不可想象的。从前,孙悟空翻江倒海,玉皇大帝——那可是神仙们的头儿,也只能派千里眼、顺风耳去看看是怎么回事。今天我们的人类,可以用望远镜巡天,可以在天空俯瞰整个大地。这是一个技术超越神话的时代,而物理学是一切技术进步的基础。从前慢,慢到一生只够学会用母语读小说。但在今天这样的科技支撑的、高度发达的时代里,量子力学这样的上世纪头脑风暴的产物,也许今天应该成为人们的知识标配。
我们为什么要学习量子力学呢?量子力学简直就是一个号称学物理的人的必备。从前法国先哲庞加莱说过一句话:“虽然人们并不是因为科学就幸福了,但是如今没有了科学人们可不怎么能幸福起来。” 仿此,我们可以说:“虽然,人们不会因为懂得量子力学就是物理学家了,但是今天的人们如果不懂量子力学而宣称自己是物理学家的话,可能显得有点鲁莽!” 量子力学和相对论,据说是现代物理的两大支柱啊!作为支柱的量子力学我们怎么可以不学呢?当然了,正确的态度应该是把物理学看成一个不分割的整体,我们努力从不同的方向去学习,追求一种融会贯通的境界。学物理的人,大体会说学量子力学让我们很happy. 按照美剧《生活大爆炸》里Sheldon 博士的说法:“Quantum physics makes me so
happy, it’s like looking at the univer naked (量子物理让我高兴,宇宙看起来跟在裸奔似的).” 如果在中学时期就能学一些量子力学,那就更棒了。不仅你自己感到快乐,还能让你妈感到快乐。
图1. Dr. Sheldon: Quantum physics makes me so happy.什么是量子 (quantum) 呢?拉丁语形容词“多少”的阳性、中性、阴性形式分别是 Quantus,Quantum,Quanta. 如今英文的Quantity,quantitate, quantitative 都和数量有关,是定量、量化的意思。在拉丁语系的
语言中,比如意大利语, quantum 的同源词都明显是多少的意思, 比如Quanto costano (这东西多少钱)?Quanti anni hai (你有几个岁) ? 在英语中,quantum 也一直当作“数量”在用。降雨量是quantum of rainfall而不是quantity of rainfall. 在著名的007系列中有一集quantum of solace,被翻译成了“量子危机”。其实这和“量子”没有任何关系。Quantum of solace是舒适度、安全度的意思。过去的江湖人士而今的特工明星到了任何地方,都要有本领迅速评估出环境的安全度。如今在西方的和量子力学有关的语境中, quantum (quant) 被当成名词单数,而quanta (quanten) 被当成名词复数用,偶尔也有用quantal的。Quantum mechanics,日本人把它翻译成量子力学,我们玩的是拿来主义。
什么是量子呢?可以说一个事物的最小构成单元就是quantum,它具有完整性、不可分辨性。比如,鱼群的quantum就是一条一条的鱼。将来我们会知道,抽象的事物,比如物理的作用量, action,它的量子是普朗克常数h. 谈论量子世界要关注两个词, atom和integer, 不要把它们简单地按照英汉字典理解成“原子”和“整数”,不,它们的正确意思应该按照字面理解,是拉丁语的不可分和不相连。我们的手指头、脚指头就分立的、不相连的,对它们计数用的就是integer,1, 2, 3, 4……这些不相连的数。基于这样的分立对象的就是digital,我们说我们处于数字时代 (digital times) ,但digital 来自digitus这个词, 它就是手指头、脚
趾头的意思。Atom 和integer就体现了量子的精神,这种精神在日常生活中就有应用。春秋时期,齐景公麾下有三个猛士公孙接、田开疆、古冶子,因居功自傲得罪了相国晏婴 (“晏子过而趋,三子者不起”),结果 “一朝被谗言,二桃杀三士。”为什么二桃能杀三士呢?因为桃在被“计功而食”的语境中就有了不可分的特性 (atomicity) ,两个桃子三个人分,只好争抢。三个猛士因争抢引起了羞辱感,结果全自杀身亡,这完全是着了人家的量子计谋。另一例子是,人民解放军有一位中将皮定均将军,他规定 “吃鸡蛋必须以煮鸡蛋的形式发到士兵手里,不许做成鸡蛋汤、炒鸡蛋。” 煮鸡蛋体现的是一个一个鸡蛋的分立存在,忽略鸡蛋大小的差别,则吃到了就是吃到了,不含糊。与之相对,炒鸡蛋、鸡蛋汤语境下的鸡蛋是搅合到一起的,鸡蛋失去了其量子特征,则就有了很大的含糊的余地:“二斤鸡蛋炒两个辣椒和二斤辣椒炒两个鸡蛋,都是辣椒炒鸡蛋。”量子是存在的最小单元,对于群体由少数几个单元组成的体系,我们谈论它的问题时要抱着一种谨慎的态度,因为这里要用到不同的处理问题的方式或者哲学。比如2018年 GDP是93万亿元,表示成人民币的量子就是9300万亿分,是16位数。我们说增长率是6.6%,这个数值纯从数学的角度来看是合理的;其实就是说是6.612724568932% 也行。但是,我们说某单位工资比去年涨了6.61% 就可能不是很科学,因为可能就是分几档涨的,涨工资更多的是关系到个人的事情,
含糊的、近似的6.61% 的说法数学上没大毛病但也不科学。而若是提到谁家的人口增长,比如老王家的人口增长6.6%, 虽然只到小数点后一位,也显得不是人话。这种情形,说清楚老王家到底几口人添了几个孩子才恰当。大家这时应该感觉到了吧,量子的概念不是多么邪乎的存在,它存在于我们的日常生活中。
图2. 二桃杀三士,选自《南阳汉画像石精萃》 那么quantum mechanics中的mechanics 是什么意思?mechanic是机械,弓箭、抛石机是人类最早的机械,机械手表是机械制造的巅峰。Mechanics, mechanism,说的是机巧、道理、机制,how it goes,类似汉语的“道”。早先人们用机械观来理解遇到的各种物理现象,故有热的机械观 (The mechanics of heat),电的机械观(The mechanics of electricity),原子的机械观(The mechanics of atom)。Mechanics 被译为力学是错译,英语里的力学是theory of force,德语为die Kraftslehre,但是力的概念在1894年已经被赫兹踢出了物理学,后来的物理学基本不拿力
来说事情。Quantum Mechanics (量子力学),字面上大约可以理解为关于小物理量世界的道。
量子力学是1900-1928年间一伙儿天才的头脑风暴的产物,他们几乎都出现在这张照片里。这张1927年第五次索尔维会议的合影据说是人类有史以来智商和最高的合影,没有之一。这些天才们之所以能有这样伟大的成就,只不过是因为确实是天才;确实早学了数学与物理;恰巧在那个时空点上。1927年的第五次索尔维会议,其主题是电子与光子。那一年,光子一词刚在前一年被创造出来。电子与光,就是量子力学,当然也是相对论,关切的对象和思想来源。我个人认为“光是人类同远方的唯一联系,是第一物理对象和工具!” 关于光的性质,人们下意识中都能体会到。
关于光,电影《地道战》的一段唱词特别好。“太阳出来照 (射线、几何光学) 四方,毛主席的思想闪金 (光的颜色、光谱学) 光,太阳照得人身暖 (热效应) 哎,毛主席思想的光辉照得咱心里亮 (光是信息载体) ,照得咱心里亮。” 短短四句,把光的性质说全了。而电子呢, 也叫阴极射线、β粒子,是1859-1909年间被以不同面目发现、被用多种方式研究的,它对物质的诸多电性质负责。注意,它的发现始终是和光联系在一起的。