磷酸铁锂电池火灾危险性分类
董海斌, 张少禹, 李毅, 等. ncm811高比能锂离子电池热失控火灾特性[j]. 储能科学与技术, 2019, 8(s1): 65-70.
[本文引用: 1]
dong h b, zhang s y, li y, et al. thermal runaway fire characteristics of lithium ion batteries with high specific energy ncm811[j]. energy storage science and technology, 2019, 8(s1): 65-70.
[本文引用: 1]
[2]
forgez c, vinh d d, friedrich g, et al. thermal modeling of a cylindrical lifepo4/graphite lithium-ion battery[j]. journal of power sources, 2010, 195(9): 2961-2968.
[3]
huang p f, ping p, li k, et al. experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with li4ti5o12 anode[j]. applied energy, 2016, 183: 659-673.
[4]
larsson f, mellander b e. abu by external heating, overcharge and short circuiting of mercial lithium-ion battery cells[j]. journal of the electrochemical society, 2014, 161(10): a1611-a1617.
[5]
li d j, danilov d l, gao l, et al. degradation mechanisms of c6/lifepo4 batteries: experimental analys of cycling-induced aging[j]. electrochimica acta, 2016, 210: 445-455.
[本文引用: 1]
[6]
feng x n, sun j, ouyang m g, et al. characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[j]. journal of power sources, 2015, 275: 261-273.
[本文引用: 1]
[7]
lamb j, orendorff c j, steele l a m, et al. failure propagation in multi-cell lithium ion batteries[j]. journal of power sources, 2015, 283: 517-523.
[8]
lopez c f, jeevarajan j a, mukherjee p p. experimental analysis of thermal runaway and propagation in lithium-ion battery modules[j]. journal of the electrochemical society, 2015, 162(9): a1905-a1915.
[9]
li h, duan q l, zhao c p, et al. experimental investigation on the thermal runaway and its propagation in the large format battery module with li(ni1/3co1/3mn1/3)o2 as cathode[j]. journal of hazardous materials, 2019, 375: 241-254.
[本文引用: 2]
[10]
刘昱君, 段强领, 黎可, 等. 多种灭火剂扑救大容量锂离子电池火灾的实验研究[j]. 储能科学与技术, 2018, 7(6): 1105-1112.liu y j, duan q l, li k, et al. experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents[j]. energy storage science and technology, 2018, 7(6): 1105-1112.
[本文引用: 1]
[11]
babrauskas v. pillow burning rates[j]. fire safety journal, 1985, 8(3): 199-200.
[本文引用: 1]
[12]
ribière p, grugeon s, morcrette m, et al. investigation on the fire-induced hazards of li-ion battery cells by fire calorimetry[j]. energy & environmental science, 2012, 5(1): 5271-5280.
[本文引用: 2]
[13]
ping p, wang q s, huang p f, et al. study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[j]. journal of power sources, 2015, 285: 80-89.
[本文引用: 1]
[14]
ping p, kong d p, zhang j q, et al. characterization of behaviour and hazards of fire and deflagration for high-energy li-ion cells by over-heating[j]. journal of power sources, 2018, 398: 55-66.
[本文引用: 1]
[15]
li h, chen h d, zhong g b, et al. experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition[j]. journal of loss prevention in the process industries, 2019, 61: 122-129.
[本文引用: 1]
[16]
feng x n, sun j, ouyang m g, et al. characterization of large format lithium ion battery expod to extremely high temperature[j]. journal of power sources, 2014, 272: 457-467.
[本文引用: 1]
[17]
larsson f, bertilsson s, furlani m, et al. gas explosions and thermal runaways during external heating abu of mercial lithium-ion graphite-licoo2 cells at different levels of ageing[j]. journal of power sources, 2018, 373: 220-231.