基因工程技术在废水处理中的应用
李孟 廖改霞
(武汉理工大学市政工程系,湖北 武汉 430070)
【摘要】基因工程技术是在DNA分子水平上按照人们的意愿进行的定向改造生物的新技术。利用基因工程技术提高微生物净化环境的能力是用于废水治理的一项关键技术。本文介绍了使用英文基因工程技术的原理、特点和主要研究内容,重点阐述了基因工程技术在废水处理中的应用,并对其研究方向作了展望。
关键词:基因工程 技术 废水处理 应用
The application of gene engineering technique to wastewater treatment
Li Meng Liao Gaixia
(Department of Municipal Engineering, Wuhan University of Technology, Hubei Wuhan 430070)
Abstract: Gene engineering technique was the new technique for modifying living beings according to human wishes on the DNA molecular level and the key technique for wastewater treatment by improving the purifying environment ability of microbes. The paper introduced the principle, characteristic, main rearch content of gene engineering technique, emphasized on formulating the application of gene engineering technique in wastewater treatment, and discusd its rearch orientation in the end.
Key words: gene engineering technique wastewater treatment application
利用基因工程技术提高微生物净化污染物的能力是现代生物技术用于废水治理的一项关键技术。20世纪50年代初,由于分子生物学和生物化学的发展,对生物细胞核中存在的脱氧核糖核酸(DNA)的结构和功能有了比较清晰的阐述。20世纪70年代初实现了DNA重组技术,逐步形成了以基因工程为核心内容,包括细胞工程、酶工程、发酵工程的生物技术。这一技术发展到今天,正形成产业化并列为世界领先专业技术领域之一,广泛应用于食品、医药、化工、农业、环保、能源和国防等许多部门,并日益显示出其巨大的潜力,将为世界面临的水污染等问题的解决提供广阔的应用前景[1]。
1 基因工程技术概述
基因工程技术是一种按照人们的构思和设计,在体外将一种生物的个别基因插入病毒、质粒或其他载体分子,构成遗传物质的重组,然后导入到原先没有这类分子的受体细胞内,能持续稳定地进行无性繁殖,使重组基因在受体细胞内表达,产生出人类所需要的基因产品的操作技术。基因工程技术是一项极为复杂的高新生物技术,它具有高效、经济、清洁、低耗、可持续发展、预见性和准确性等特点[2]。一个完整的基因工程技术流程一般包括目的基因的获得、载体的制备、目的基因与载体的连接、基因的转移、阳性克隆的筛选、基因的表达、基因工程产品的分离提纯等过程[1]。
2 基因工程技术在废水处理中的应用
基因工程技术应用于废水处理是水处理领域一项具有广泛应用前景的新兴技术。常规的废水处理方法有物化法、生物法等。由于一般的物化方法只是污染物的转移,不能从根本上治理,且容易造成二次污染,成本也较高,生物法逐渐成为废水处理的主要方法。但是由于废水的多样性及其成分的复杂性,自然进化的微生物降解污染物的酶活性往往有限,如
果能利用基因工程技术对这些菌株进行遗传改造,提高微生物酶的降解活性,并可大量繁殖,就可以定向获得具有特殊降解性状的高效菌株,方便有效地应用于水污染处理。因此,构建基因工程菌成为现代废水处理技术的一个重要研究方向,且日益受到人们的重视。
2.1 利用基因工程菌富集废水中的重金属离子
近几十年来,经济的高速发展导致各种有毒、有害金属污染物,经生产和使用过程中的各种渠道进入环境。高稳定性和高脂溶性使其在环境中具有停留时间长、能沿着食物链富集等特点,严重威胁着人类的健康和生存。随着国家对污染物排放标准的要求日益严格,单纯使用传统生物法处理这类重金属废水在适应性和高效性等方面存在局限性。针对这一问题,一些新型生物处理技术应运而生,其中利用基因工程菌代替普通微生物处理重金属是近年来研究的热点。此法采用生物工程技术将微生物细胞中参与富集的主导性基因导入繁殖力强、适应性能佳的受体菌株内,大大提高了菌体对重金属的适应性和处理效率。
X.W.Zhao等[3]研究发现,宿主菌在Hg2+浓度为1mg/L的LB培养液中生长严重受抑,而基因工程菌E.coliJM109在Hg
2+浓度为7.4mg/L时仍能增殖,且Hg2+富集量为2.97mg/g(细胞干重),去除率达96%以上。
Carolina Sousa等[4]构建了表达酵母金属硫蛋白(CUP1)、哺乳动物金属硫蛋白(HMT-1A)和外膜蛋白LamB的融合蛋白的基因工程菌E.coli,该菌种的Cd2+富集能力比原始宿主菌提高15~20sloggy倍。K.Kuroda[5]等在酿酒酵母细胞壁处的凝集素蛋白中表达了含His的寡肽,增强了酵母对Cu2+的抗性和吸附能力,其Cu2+富集能力比对比菌株提高了8倍多。
X.Deng等[6]构建了同时表达镍转运系统和金属硫蛋白的基因重组菌E.coliJM10,将其用于处理含镍废水的试验研究时,发现其对Ni2+的富集能力比原始宿主菌增加了6倍多。
赵肖为等[7]利用基因工程菌E.coli SE5000 对水体中的镍离子进行富集研究。菌体细胞对Ni2+的富集速率很快,富集过程满足Langmuir 等温线模型。经基因改造的基因工程菌不仅最大镍富集容量与原始宿主菌相比增加了4倍多,而且对pH值的变化呈现出更强的适应性。
袁建军等[8]利用构建的高选择型基因工程菌生物富集模拟电解废水中的汞离子。模拟电解废水中除含有3.0 mg·L-1的汞离子外, 还含有十种以上的其它金属离子。实验表明,与重组菌对只含汞离子的水溶液的处理结果比较, 电解废水中其它组份的存在意外地增大了重组菌
富集汞离子的作用速率, 但同时却使细菌的最大汞富集量降低了约30%。
张迎明等[9]利用基因重组技术构建出基因工程菌Staphylococcus aureusATCC6538,该工程菌在IPTG用量为怎样克服紧张焦虑1.00mmol·L-1,诱导时间为4 h的条件下培养对镍离子的富集能力最高。在不同镍离子浓度时,基因工程菌对溶液中Ni2+的平衡富集量为11.33mg·g-1,与原始宿主菌相比提高了3倍。对基因工程菌吸附镍和钴的实验表明初中英语感叹句,Staphylococcus aureusATCC6538的NiCoT对镍具有较高的特异性和富集容量,属于第Ⅲ类镍钴转运酶。
2.1 利用基因工程菌降解废水中的有机污染物
生物处理法是废水中有机污染物降解的主要方法,但是部分难降解有机污染物需要不同降解菌之间的协同代谢或共代谢等复杂机制才能最终得以降解,这无疑降低了污染物的降解效率。首先,污染物代谢产物在不同降解菌间的跨膜转运是耗能过程gym是什么意思,对细菌来说这是一种不经济的营养方式;其次,某些污染物的中间代谢产物可能具有毒性,对代谢活性有抑制作用;此外,将不同种属、来源的细菌的降解基因进行重组,把分属于不同菌体中的污染物代谢途径组合起来以构建具有特殊降解功能的超级降解菌,上海画画培训可以有效地提高微生物的降解能力[10]。
Satoshi Soda等[11]将基因工程菌P.putidaBH(pSl0-45)接种到SBRdiagonal反应器的活性污泥中,用于处理500mg/L的苯酚废水,在大大提高苯酚去除率的同时改善了污泥沉降性能。南京大学、扬子石油化工有限责任公司、香港大学、国家环保总局南京环境科学研究所联合完成了跨界融合构建基因工程菌处理石化废水的生物工程技术。在优化调控技术的基础上,该菌株对二甲苯、苯甲酸、邻苯二甲酸、4-羧基苯甲醛和对苯二甲酸的降解率分别高达86%、94%、99%、97%和94%,比原工艺提高了20%~30%,总有机碳去除率达到了94%;污水经过处理后,铜、锰、锌、硒的浓度符合国家规定排放标准,生物毒性明显降低。
刘春等[12]以生活污水为共基质,考察了基因工程菌在MBR和活性污泥反应器中对阿特拉津的生物强化处理效果,以及生物强化处理对污泥性状的影响。结果表明,基因工程菌在MBR中对阿特拉津具有很好的生物强化处理效果,阿特拉津平均出水浓度为0.84 mg/L,平均去除率为95%,最大去除负荷可以达到70mg/(L·d)。生物强化的MBR对生活污水中COD的平均去除率为71%,COD平均出水浓度65mg/L。
陈俊等[13]采用跨界原生质融合技术,构建基因工程特效菌Fhhh,实现廉价工业化生产Fhhh菌剂,在10m3/d精对苯二甲酸废水处理实验装置中,容积负荷率达到3.0 kg/(L·d)以上,生物负
荷率达到1.42d-1,新东方 六级出水水质达到国家一类标准,与国内外同类装置相比,生物负荷率处于先进水平。
蒋建东等[14]采用enzu同源重组法成功构建了分别含1个和2个mpd 基因插入到rDNA位点且不带入外源抗性的多功能农药降解基因工程菌株CDS2mpd和CDS22mpd。基因工程菌遗传稳定,能同时降解甲基对硫磷和呋喃丹。甲基对硫磷水解酶(MPH)的比活在各生长时期均高于原始出发菌株,比活最高达6.22mubigoted/μg。
刘智等[15]采用基因工程技术构建出具有耐盐、降解苯乙酸和水解甲基对硫磷的功能的基因工程菌H2pKT2MP和H2pBBR2MP,其中H2pBBR2MP水解酶活性与亲本菌株甲基对硫磷降解菌(Pudomonas putida)DLL2E4相当,而H2pKT2MP水解酶活性要提高1倍左右。
吕萍萍等[16]研究发现,克隆有苯降解过程中的关键基因——甲苯加双氧酶的基因工程菌E.coli.JM109(pKST11)对苯具有较高的降解效率和降解速度,应用于固定化细胞反应器中效果突出。在较短的水力停留时间内,可以将1500mg/L苯降解70%,降解速度为1.11mg/(L·s),延长水力停留时间,可以使去除率达到95%以上。该反应器对高浓度的苯具有突出的处理效果。同时所得到的产物为环己二烯双醇,可以被野生非高效菌W3快速利用。