机器学习的算法

更新时间:2023-07-05 00:36:51 阅读: 评论:0

机器学习的算法
1. 线性回归
线性回归(Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x 值)和数值结果(y 值)。然后就可以用这条线来预测未来的值!
这种算法最常用的技术是最小二乘法(Least of squares)。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。
例如,简单线性回归,它有一个自变量(x 轴)和一个因变量(y 轴)
2. 逻辑回归
逻辑回归(Logistic regression)与线性回归类似,但它是用于输出为二进制的情况(即,当结果只能有两个可能的值)。对最终输出的预测是一个非线性的 S 型函数,称为 logistic function, g()。
广州学校
这个逻辑函数将中间结果值映射到结果变量 Y,其值范围从 0 到 1。然后,这些值可以解释为 Y 出现的概率。S 型逻辑函数的性质使得逻辑回归更适合用于分类任务。
逻辑回归曲线图,显示了通过考试的概率与学习时间的关系。
3. 决策树
决策树(Decision Trees)可用于回归和分类任务。
在这一算法中,训练模型通过学习树表示(Tree reprentation)的决策规则来学习预测目标变量的值。树是由具有相应属性的节点组成的。
在每个节点上,我们根据可用的特征询问有关数据的问题。左右分支代表可能的答案。最终节点(即叶节点)对应于一个预测值。
每个特征的重要性是通过自顶向下方法确定的。节点越高,其属性就越重要。
4. 朴素贝叶斯
朴素贝叶斯(Naive Bayes)是基于贝叶斯定理。它测量每个类的概率,每个类的条件概率给出 x 的值。这个算法用于分类问题,得到一个二进制“是 / 非”的结果。看看下面的方程式。
P(c|x)=P(x|c)P©P(x)P(c|x)=P(x|c)羞愧的意思P©P(x)
P(c|x)=P(c|x)= 给定预测变量 X,c 类事件的概率。
P(x|c)=P(x|c)= 给定 c 时,x 的概率。
P©=P©= 类的概率。
P(x)=P(x)= 预测的概率。
朴素贝叶斯分类器是一种流行的统计技术,可用于过滤垃圾邮件!
西南位育中学5. 支持向量机(SVM)
寒假英文支持向量机(Support Vector Machine,SVM)是一种用于分类问题的监督算法。支持向
量机试图在数据点之间绘制两条线,它们之间的边距最大。为此,我们将数据项绘制为 n 维空间中的点,其中,n 是输入特征的数量。在此基础上,支持向量机找到一个最优边界,称为超平面(Hyperplane),它通过类标签将可能的输出进行最佳分离。
超平面与最近的类点之间的距离称为边距。最优超平面具有最大的边界,可以对点进行分类,从而使最近的数据点与这两个类之间的距离最大化。soul什么意思
例如,H1 没有将这两个类分开。但 H2 有,不过只有很小的边距。而 H3 以最大的边距将它们分开了。
6. K- 最近邻算法(KNN)
K- 最近邻算法(K-Nearest Neighbors,KNN)非常简单。KNN 通过在整个训练集中搜索 K 个最相似的实例,即 K 个邻居,并为所有这些 K 个实例分配一个公共输出变量,来对对象进行分类。
K 的选择很关键:较小的值可能会得到大量的噪声和不准确的结果,而较大的值是不可行的。它最常用于分类,但也适用于回归问题。
用于评估实例之间相似性的距离可以是欧几里得距离(Euclidean distance)、曼哈顿距离(Manhattan distance)或明氏距离(Minkowski distance)。欧几里得距离是两点之间的普通直线距离。它实际上是点坐标之差平方和的平方根。
7. K- 均值
K- 均值(K-means)是通过对数据集进行分类来聚类的。例如,这个算法可用于根据购买历史将用户分组。它在数据集中找到 K 个聚类。K- 均值用于无监督学习,因此,我们只需使用训练数据 X,以及我们想要识别的聚类数量 K。
该算法根据每个数据点的特征,将每个数据点迭代地分配给 K 个组中的一个组。它为每个 K- 聚类(称为质心)选择 K 个点。基于相似度,将新的数据点添加到具有最近质心的聚类中。这个过程一直持续到质心停止变化为止。
星期四的英语单词
8. 随机森林
六级成绩查询无准考证随机森林(Random Forest)是一种非常流行的集成机器学习算法。这个算法的基本思想是,许多人的意见要比个人的意见更准确。在随机森林中,我们使用决策树集成(参见决
策树)。
customerrvice为了对新对象进行分类,我们从每个决策树中进行投票,并结合结果,然后根据多数投票做出最终决定。
(a)在训练过程中,每个决策树都是基于训练集的引导样本来构建的。(b)在分类过程中,输入实例的决定是根据多数投票做出的。聚智堂教育
9. 降维
由于我们今天能够捕获的数据量之大,机器学习问题变得更加复杂。这就意味着训练极其缓慢,而且很难找到一个好的解决方案。这一问题,通常被称为“维数灾难”(Cur of dimensionality)。
降维(Dimensionality reduction)试图在不丢失最重要信息的情况下,通过将特定的特征组合成更高层次的特征来解决这个问题。主成分分析(Principal Component Analysis,PCA)是最流行的降维技术。
主成分分析通过将数据集压缩到低维线或超平面 / 子空间来降低数据集的维数。这尽可能地保留了原始数据的显著特征。
可以通过将所有数据点近似到一条直线来实现降维的示例。
10. 人工神经网络(ANN)
人工神经网络(Artificial Neural Networks,ANN)可以处理大型复杂的机器学习任务。神经网络本质上是一组带有权值的边和节点组成的相互连接的层,称为神经元。在输入层和输出层之间,我们可以插入多个隐藏层。人工神经网络使用了两个隐藏层。除此之外,还需要处理深度学习。
人工神经网络的工作原理与大脑的结构类似。一组神经元被赋予一个随机权重,以确定神经元如何处理输入数据。通过对输入数据训练神经网络来学习输入和输出之间的关系。在训练阶段,系统可以访问正确的答案。
within

本文发布于:2023-07-05 00:36:51,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/78/1078891.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:数据   学习   用于   算法   问题   分类
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图