目录
中文摘要 ............................................................................................................................... III 第一章绪论 . (1)
1.1 引言 (1)
1.2 国内外研究现状 (2)
1.3 研究内容和组织结构 (4)
延边大学排名第二章相关的理论研究 (5)
2.1 流形学习 (5)
2.1.1 等距映射(Isomap) (5)
2.1.2 局部线性嵌入(LLE) (6)
2.2 聚类 (7)
2.2.1 混合概率主成分分析算法(MPPCA) (7)
2.2.2 密度峰值聚类算法(DPC) (8)
2.3 Tensor V oting (9)
2.4 小结 (10)
第三章基于密度的相交多流形聚类方法DC_MPPCA (11)
3.1 引言 (11)
3.2 基于密度的相交多流形聚类方法DC_MPPCA (11)
3.2.1 构造多个局部数据块 (12)
3.2.2 计算局部密度ρi (12)
3.2.3 计算相对距离δi (13)
3.2.4 确定聚类中心 (13)
3.2.5 去除噪声并生成各个子流形 (13)
3.2.6 时间复杂度分析 (13)
3.3 实验结果和分析 (13)
3.3.1 实验环境 (14)
3.3.2 人工数据集上的可视化实验结果 (14)
3.3.3 人工数据集上的时间和精度上的实验结果 (15)
3.3.4 真实数据集上的时间和精度上的实验结果 (16)
3.3.5 关键参数设定 (17)
3.4 本章小结 (17)
第四章基于Tensor Voting框架的多流形聚类算法TMMC (19)星火英语网站
4.1 引言 (19)
4.2 基于Tensor V oting框架的多流形聚类算法TMMC (19)
4.2.1 相交区域数据Xinte (20)
4.2.2 最外层点Xout (20)
4.2.3 时间复杂度分析 (21)
4.3 实验结果分析 (22)
4.3.1 实验环境 (22)
4.3.2 人工数据集上可视化验证 (22)
4.3.3真实数据集上的实验结果 (23)
4.3.4参数对算法的影响 (24)
example>超能陆战队片尾曲4.4 本章小结 (25)
第五章基于MATLAB的流形学习方法可视化系统 (27)
扇贝网登陆5.1 引言 (27)
5.2 系统功能模块分析 (27)
5.2.1 界面分析 (28)
5.2.2 数据集模块 (28)
5.2.3 算法模块 (29)
5.2.4 拓展模块 (30)
5.3 本章小结 (34)
第六章总结与展望 (35)
6.1 总结 (35)八年级上册英语单词
does的过去式6.2 未来展望 (35)
参考文献 (37)
攻读学位期间取得的研究成果 (41)
致谢 (43)
个人简况及联系方式 (45)
承诺书 (46)
学位论文使用授权声明 (47)
CONTENTSagull发音
Chine Abstract ................................................................................................................ I I II Chapter 1 Introduction (1)
1.1 Introduction (1)
1.2 The rearch status at home and abroad (2)
1.3 Rearch content and organizational structure (4)
powerstrip
Chapter 2 Rearch on Manifold Learning Theory (5)
2.1 Manifold learning (5)
2.1.1 Isometric Mapping(Isomap) (5)
2.1.2 Locally Linear Embedding (LLE) (6)
2.2 Clustering (7)
2.2.1 Mixtures of Probabilistic Principal Component Analyrs(MPPCA) (7)
2.2.2 Density peak clustering algorithm(DPC) (8)
2.3 Tensor V oting (9)
2.4 Summary (10)
Chapter 3 Density-Bad Intercting Multi-manifold Clustering Method DC_MPPCA (11)
3.1 Introduction (11)
3.2 Density-Bad Intercting Multimanifold Clustering DC_MPPCA (11)
3.2.1 Construct multiple local data blocks (12)
3.2.2 Calculate local density ρi (12)
3.2.3 Calculate relative distance δi (13)
3.2.4 Determine the cluster center (13)
3.2.5 Remove noi and generate individual submanifolds (13)
3.2.6 Time complexity analysis (13)
3.3 Experimental results and analysis (13)
3.3.1 Lab environment (14)
3.3.2 Visualization of experimental results on synthetic data ts (14)
3.3.3 Experimental results on time and accuracy on synthetic data ts (15)
3.3.4 Experimental results on time and accuracy on real datats (16)
3.3.5 Setting of key parameters (17)
3.4 Chapter summary (17)
Chapter 4 Multi-manifold clustering TMMC bad on Tensor Voting framework (19)
4.1 Introduction (19)
4.2 Multimanifold clustering TMMC bad on Tensor V oting framework (19)
4.2.1 Intercting area data Xinte (20)
4.2.2 Outermost point Xout (21)
4.2.3 Time complexity analysis (22)
4.3 Analysis of results (22)
4.3.1 Lab environment (22)
4.3.2 Visual verification on artificially synthesized datats (22)
4.3.3 Experimental results on real data ts (24)
4.3.4 Influence of parameters on the algorithm (25)
4.4 Chapter summary (26)
Chapter 5 Visual system of manifold learning method bad on MATLAB (27)you are not prepared
5.1 Introduction (27)
5.2 System function module analysis (27)
5.2.1 Interface analysis (28)
5.2.2 Data Set Module (28)
5.2.3 Algorithm module (29)
5.2.4 Expansion module (30)
5.3 Chapter summary (34)
Chapter 6 Summary and Prospect (35)
6.1 Summary (35)
6.2 Future outlook (36)
References (37)
Rearch Achivements (41)
Acknowledgment (43)
Personal Profiles and Contact information (45)
Letter of Commitment (46)
Authorization Statement (47)