本文作者:kaifamei

一种电池寿命预测方法与流程

更新时间:2024-11-15 15:42:11 0条评论

一种电池寿命预测方法与流程



1.本发明涉及电池寿命预测技术领域,具体涉及一种电池寿命预测方法。


背景技术:

2.当前对于电池寿命的预测方法可以分为基于经验和性能两类。基于经验的方法通常使用一种统计方法,利用电池使用过程中的经验和知识对电池寿命进行预测,例如现有的循环周期数法、安时法与加权积分法等。基于经验的方法简便快捷,但只能在电池知识储备量大和特定条件下使用,在复杂的条件变化(如温度、电流等变化)下则很难预测。
3.基于性能的方法通过判断当前电池的性能和健康状态是否可以继续使用来预测电池寿命,预测过程主要分为以下二个步骤:步骤一、通过已知的电池运行信息对电池当前老化状态进行识别;步骤二、使用相应算法对电池未来性能衰退至失效阈值的剩余充放电循环次数进行预测,预测结果即为电池剩余寿命。
4.但部分现有的基于性能的电池寿命预测方法采用的相关算法(例如公开号为cn110059377b的专利采用深度卷积神经网络来预测燃料电池寿命)的运算过程较为复杂,且难以模拟电池真实工作环境,对电池剩余寿命的预测准确度也不够理想。
5.电池工作环境的温度、湿度、充放电时的电流大小、放电深度被认为是影响电池寿命的主要因素。但实际上,每次充放电时的电流波动程度、波动时长、电池所处环境的环境盐度同样是影响电池寿命的重要因素。在电池全寿命周期内,若出现电流波动的充放电次数大量,例如达到数百次甚至数千次,如此庞大数量的充放电电流波动会对电池寿命产生重大影响。但现有方法中,由于难以测量充放电波动次数、波动程度、波动时长对电池寿命的影响程度,因此,现有方法中直接忽略了这些因素对电池寿命的影响,导致对电池的寿命预测结果不够精准。


技术实现要素:

6.本发明以提高电池寿命预测准确度和预测速度为目的提供了一种电池寿命预测方法。为达此目的,本发明采用以下技术方案:提供一种电池寿命预测方法,所述方法包括:采集待测电池在真实使用环境下的指定期间内每次充放电的充放电数据;根据若干组所述充放电数据计算所述待测电池的映射变量值;基于所述映射变量值与电池寿命衰减量的映射关系,得到所述待测电池经所述指定期间的若干次充放电后的电池寿命衰减量;形成所述待测电池的映射变量值、指定期间内充放电次数、电池寿命衰减量数据对,然后将该数据对与四者关联关系库中的各元素进行数据匹配,以获取成功匹配的所述元素中记载的理论电池寿命期间;根据所述待测电池的累计已充放电次数估算其理想电池寿命期间,并计算所述理
论电池寿命期间与所述理想电池寿命期间的偏差,然后利用所述偏差计算所述待测电池的第一寿命值;对所述第一寿命值进行温、湿度补偿和环境盐度补偿后得到第二寿命值作为对所述待测电池最终的寿命值预测结果。
7.作为优选,每组所述充放电数据包括一次充放电过程中的充电电流、放电电流、充电持续时长、放电持续时长、放电深度、充电电流波动值、放电电流波动值、充电波动时长、放电波动时长、电池所处环境温度、湿度以及电池所处环境的盐度。
8.作为优选,所述映射变量值与所述电池寿命衰减量的所述映射关系,以及所述四者关联关系通过以下方法建立:获取与所述待测电池同批次出厂的实验电池在全基准充放电场景下的第一总寿命值;将所述实验电池营造在突变充放电场景下;采集所述实验电池在所述突变充放电场景下的所述指定期间内产生的若干组所述充放电数据并记录充放电次数,然后计算所述实验电池对应的所述映射变量值;恢复所述实验电池处于全基准充放电场景下,以继续对所述实验电池进行寿命测试实验,得到其经历所述突变充放电场景后的第二总寿命值;计算所述第一总寿命值与所述第二总寿命值的寿命差值作为与所述实验电池的所述映射变量值具有映射关系的所述电池寿命衰减量,并形成所述实验电池对应的所述映射关系加入到映射关系库中以及形成映射变量值、指定期间内充放电次数、电池寿命衰减量、理论电池寿命期间的四者关联关系分别加入到所述四者关联关系库中。
9.作为优选,营造所述突变充放电场景的方法为:将所述实验电池接入到充放电电路中;选定所述充放电电路中的任意一个波动调整电路为突变充放电场景营造电路;计算所述指定期间对应的导通时长,然后计算在所述导通时长内每次充放电的充放电时长,并安排好每次充放电的顺序;控制选定的所述波动调整电路导通并保持所述导通时长,所述波动调整电路导通期间,所述充放电电路为闭合回路;控制所述实验电池按照安排好的充放电顺序和充放电时长在所述导通时长内执行若干次相应的充放电动作。
10.作为优选,营造所述突变充放电场景的方法为:将所述实验电池接入到充放电电路中;选定所述充放电电路中有能力营造电池在真实使用场景下的充放电电流波动特性的波动调整电路作为对应次充放电的突变充放电场景营造电路;为被选定的每个所述波动调整电路确定充放电时长和充放电顺序,每个被选定的所述波动调整电路对应的充放电时长的和值等于所述充放电电路的导通时长;在所述充放电电路导通期间,按照所述充放电顺序先后驱动对应的所述波动调整电路导通,并在导通期间完成执行相应的充放电动作。
11.作为优选,所述充放电电路中包括若干个相互间并联连接的具有相同或不同电流波动幅度调整能力和不同波动时长调整能力的所述波动调整电路,每个所述波动调整电路
包括波动时长调整电路和波动幅度调整电路,所述波动时长调整电路为电感,每个所述波动调整电路中的所述电感的电感值不同。
12.作为优选,计算所述待测电池或所述实验电池在所述指定期间内或所述指定期间对应的导通时长内的所述映射变量值的方法包括:分别计算在所述指定期间或所述导通时长内采集的若干组中的每组所述充放电数据中的充电电流波动值、放电电流波动值、放电深度、波动时长的均值,分别记为、、、,为每组充放电数据中的充电波动时长与放电波动时长的加权求和值;为若干组中的每组所述充放电数据对应的的均值;判断每组所述充放电数据中的与的距离是否小于第一阈值且与的距离是否小于第二阈值且与的距离是否小于第三阈值且与的距离是否小于第四阈值,若是,则将该组所述充放电数据加入到第一数据集中,若否,则将该组所述充放电数据加入到第二数据集中;对所述第一数据集和所述第二数据集中的若干组所述充放电数据分别进行充电量均值和放电量均值计算,得到所述第一数据集对应的第一充电量均值和第一放电量均值,并得到所述第二数据集对应的第二充电量均值和第二放电量均值,然后对所述第一充电量均值和所述第二充电量均值作加权求和计算得到第一和值,对所述第一放电量均值和所述第二放电量均值作加权求和计算得到第二和值,最后对所述第一和值和所述第二和值作加权求和计算,所得和值作为所述映射变量值。
13.作为优选,利用所述偏差计算所述待测电池的所述第一寿命值的方法为:获取所述待测电池从出厂到经历所述突变充放电场景后的第一累计已充放电次数、全寿命周期的额定充放电次数和在四者关联关系库中成功匹配到的所述元素对应的实验电池在经历所述突变充放电场景后的第二累计已充放电次数;计算所述第一累计已充放电次数和所述第二累计已充放电次数的比值;计算所述额定充放电次数与所述第一累计已充放电次数的差值;计算所述差值与所述比值的乘值;计算所述乘值与所述第一累计已充放电次数的和值作为所述第一寿命值。
14.作为优选,对所述第一寿命值进行温、湿度和环境盐度补偿的方法为:在所述指定期间内针对所述待测电池采集的若干组所述充放电电数据,计算所述待测电池在充放电过程中的环境温度的平均值、所处环境湿度平均值和所处环境盐度平均值;将、、分别作为对应的拟合函数的自变量,求解得到分别对应的温度补偿系数、湿度补偿系数、环境盐度补偿系数;对所述第一寿命值,分别计算其与、、的乘值,结果、、;
对、、进行加权求和得到所述寿命值预测结果;作为优选,所述拟合函数通过以下公式(1)表达:公式(1)中,表示或或;表示所述自变量;、、分别表示二次项系数、一次项系数和常数项。
15.本发明具有以下有益效果:1、提供了一种充放电电路,利用具有不同电感值的电感所具有的不同的电流缓释能力,赋予营造在突变充放电场景下的实验电池在充电或放电时具有不同的充放电波动时长,以模拟出电池真实的充放电波动时长特性;同时利用具有不同充放电电流波动幅度调整能力的波动幅度调整电路,赋予营造在突变充放电场景下的实验电池在充电或放电时具有不同的充放电电流波动值,以模拟出电池真实的充放电波动幅度特性,并将实验电池在突变充放电场景下的充放电波动时长特性和充放电波动幅度特性作为影响电池寿命的重要因素,由此而寻到的映射变量值与电池寿命衰减量的映射关系更加准确,有利于提高电池寿命预测的准确度。
16.2、将影响电池寿命预测准确度的充电电流波动值、放电电流波动值、充电波动时长、放电波动时长、放电深度、充电电流、放电电流、充电持续时长、放电持续时长这9大因素用映射变量值来表征,并寻映射变量值与电池寿命衰减量的映射关系,在预测经历指定期间的若干次充放电数据后对电池寿命的衰减量时,只需要根据指定期间内对待测电池采集的若干次的这些充放电数据计算得到映射变量值,即可基于这个映射关系快速匹配到这个电池寿命衰减量,大幅提升了电池寿命衰减量的预测速度。
17.3、根据事先总结的映射变量值、指定期间内充放电次数、电池寿命衰减量与理论电池寿命期间的四者关联关系,只要获取到待测电池的映射变量值、指定期间内充放电次数、电池寿命衰减量数据对,即可基于这个四者关联关系快速匹配到待测电池当前应当所处的理论电池寿命期间,然后根据待测电池的累计已充放电次数计算当前所处的理想电池寿命期间,然后利用理论电池寿命期间与理想电池寿命期间的偏差,可以快速且较为准确地计算出待测电池的第一寿命值;4、考虑了电池工作环境温、湿度和环境盐度对电池寿命的影响,通过对第一寿命值进行温、湿度补偿和环境盐度补偿得到第二寿命值作为对待测电池最终的寿命值预测结果,预测结果更加准确。
附图说明
18.为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
19.图1是本发明一实施例提供的模拟电池真实使用环境的自动化模拟装置的设备构成图;
图2是本发明一实施例提供的充放电电路的电路结构示意图;图3是将电池的全寿命周期划分为若干个电池寿命期间的示例图;图4是本发明一实施例提供的电池寿命预测方法的实现步骤图。
具体实施方式
20.下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
21.其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
22.本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若出现术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
23.在本发明的描述中,除非另有明确的规定和限定,若出现术语“连接”等指示部件之间的连接关系,该术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个部件内部的连通或两个部件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
24.本发明快速且准确地预测电池寿命的原理为:首先在待测电池在真实使用环境下,采集其在指定时段内的若干组充放电数据(一次充放电为一组),然后根据采集的若干组充放电数据计算对应的映射变量值,这个映射变量值考虑了每次充放电中充电电流波动值、放电电流波动值、充电波动时长、放电波动时长、放电深度、在该指定时段内的累计充电量、累计放电量对电池寿命预测结果的影响。
25.然后基于预先确定的映射变量值与电池寿命衰减量之间的映射关系,得到待测电池经指定期间的若干次充放电后的电池寿命衰减量。
26.在不同的电池寿命期间,为实验电池营造相同的突变充放电场景,执行相同数量的充放电次数,得到相同的映射变量值,但实验结果表明,在不同电池寿命期间得到的相同映射变量值通常对应不同的电池寿命衰减量。本发明利用这个特性,寻到了映射变量值、指定期间内充放电次数、电池寿命衰减量数据对与理论电池寿命期间的关联关系,称之为四者关联关系。在待测电池的映射变量值、指定期间内充放电次数和电池寿命衰减量已知后,可以基于这个四者关联关系,快速匹配出待测电池当前应当所处的理论电池寿命期间。
27.这个理论电池寿命期间是在实验环境下总结而得的,未考虑真实环境下的全寿命周期内的每个阶段中的充放电电流波动幅度、波动时长对电池寿命周期估算准确度的影响。所以对待测电池计算的这个理论电池寿命期间与根据待测电池累计已充放电次数估算的理想电池寿命期间存在偏差。例如,待测电池的理论电池寿命期间为已进入图3中所示的成年期,而根据待测电池的实际累计已充放电次数,其还未经过成长期,即根据累计已充放
电次数测算,理想条件下,该待测电池应当还尚处于成长期。本发明则利用这个理论电池寿命期间与理想电池寿命期间的偏差,去计算待测电池的第一寿命值。
28.在计算映射变量值、寻映射变量值与电池寿命衰减量之间的映射关系、寻映射变量值、指定期间内充放电次数、电池寿命衰减量、理论电池寿命期间的四者关联关系时,若将电池环境温湿度、环境盐度同样作为影响电池寿命的考量因素,映射变量值的计算、映射关系和四者关联关系的寻难度会呈指数级上升,所以在计算映射变量值,寻映射关系和四者关联关系时,本发明并未将环境温、湿度、环境盐度作为考量因素。但环境温、湿度、环境盐度又是影响电池寿命预测精度的重要因素,不可忽略,因此本发明在最后需要对第一寿命值进行温、湿度补偿和环境盐度补偿,得到第二寿命值作为对待测电池最终的寿命值预测结果。
29.根据上述的寿命预测原理,本发明实施例提供的电池寿命预测方法包括以下六个技术部分:一、采集寿命预测所需的充放电数据采集待测电池在真实使用环境下的指定期间内每次充放电的充放电数据。以某户用储能系统的电池组充放电为例,例如,该户用储能的使用场景为每天上午8:00、8:30和下午17:00、17:30分别放电30分钟,每天的17:30、21:30分充电4个小时,即该户用储能系统每天放电两次,每次放电时间为30分钟,每天充电1次,每次充电时间为240分钟。若要采集预测该电池组寿命所需的充放电数据,可以指定30天或15天为一个充放电数据采集的期间(即指定期间)。若选定15天为数据采集的指定期间,那么按照上面的应用场景,将采集30组放电数据和15组充电数据,每组放电数据的放电时长为30分钟,每组充电数据的充电时长为240分钟。但以15天为一个指定期间,需要15天后才能完成充放电数据采集,效率过于低下,因此,明确电池的充放电规律后,可以对指定期间进行压缩,以提高测试效率。例如,上面确定需要获取的充电数据为30组,每组30分钟,放电数据为15组、每组240分钟,且确定充放电方式为:一次充电240分钟+2次放电每次放电30分钟,则完成一次充放电需要的时长为30+30+240=300分钟,一天24小时可以充放电4.8次,一共15次充放电最短可以在15/4.8天内完成。不间断的充放电无法满足电池组完成一次充电或放电后的降温需求,因此,为了确保每次充电或放电完成后具有足够的时间对电池组进行降温,可以确定指定期间为4天,相比15/4.8多出的时间,可以以分段的形式插入到每次充、放电的间隙中,以留足电池组降温时间。通过这样的充放电数据采集方式,既确保了采集场景与真实充放电场景尽可能一致,又提高了数据采集的效率。
30.采集待测电池在指定期间内每次充放电的充放电数据的目的是为了计算待测电池的映射变量值,这个映射变量值充分考虑了每次充放电中充电电流波动值、放电电流波动值、波动时长、放电深度、在该指定期间内的累计充电量、累计放电量对电池寿命预测结果产生的影响。因此,所要采集的每组充放电数据包括充放电过程中的充电电流、放电电流、充电持续时长、放电持续时长、放电深度、充电电流波动值、放电电流波动值、充电波动时长和放电波动时长,其中充电电流和放电电流指充电或放电过程稳定后的充、放电电流的稳定值;充电电流波动值和放电电流波动值分别指启动充电后、开始放电后并在达到稳流前的最大电流和最小电流的差值;充电波动时长和放电波动时长为充电或放电达到稳流前的持续时长。
31.这里需要强调的是,在寻实验电池的映射变量值与电池寿命衰减量的映射关系,以及在寻实验电池的映射变量值、指定时段内的充放电次数、电池寿命衰减量数据对与理论电池寿命期间的四者关联关系时,若将实验电池的环境温度、湿度和环境盐度纳入为影响电池寿命的考虑因素,映射关系和四者关联关系寻的复杂度将呈指数级上升,实验过程会变得非常困难。因此,为了降低寻这两个关系的复杂度,本发明在寻这两个关系时并未将环境温度、湿度和环境盐度纳入到考虑因素中,即寻这两个关系时,图1中所示的自动化模拟装置是不工作的。但环境温度、湿度和环境盐度对电池寿命会产生重要影响,是不可忽视的因素,因此本发明提供的最后一步是对未考虑环境温、湿度和环境盐度的情形下预测得到的第一寿命值进行温、湿度补偿和环境盐度补偿。由于最后一步需要进行温、湿度补偿和环境盐度补偿,所以在每次采集充放电数据时,还需要采集电池所处的环境温度、湿度以及环境盐度(盐溶液附着在电池表面可能腐蚀电池的极柱和外壳,使得内部活性物质和电解液进入杂质,这些杂质会影响电池寿命)。
32.二、计算待测电池的映射变量值待测电池的映射变量值考虑了每次充放电中的充电电流波动值、放电电流波动值、充电波动时长、放电波动时长、放电深度、在指定时段内的累计充电量、累计放电量对电池寿命预测结果的影响以及这些影响因素各自的影响程度,其计算方法为:分别计算在指定期间内采集的若干组中的每组充放电数据中的充电电流波动值、放电电流波动值、放电深度、波动时长的均值,分别记为、、、。充电电流波动值为充电启动后达到电流稳定前的最大电流和最小电流的差值;放电电流波动值为放电启动后达到电流稳定前的最大电流和最小电流的差值。举例而言,假设在指定期间内采集的每组充放电数据包括两组放电数据和一组充电数据,两组放电数据中的充电电流波动值若分别用、表示,一组充电数据中的放电电流波动值用表示,且若采集了10组充放电数据,这10组充放电波动数据表示为:(、、)、(、、)、(、、)、
……
、(、、)、
……
、(、、),则,。放电深度若用表示,则10组放电深度表达为(、),则。
33.为每组充放电数据中的充电波动时长与放电波动时长的加权求和值。以充放电波动数据(、、)为例,其中的、对应的充电波动时长分别记为、,对应的放电波动时长记为,则,其中,、、分别表示、、在计算时所占的权重,为了便于的计算,优选地,++。
34.而为若干组中的每组充放电数据对应的值的均值。例如记(、、)对应的为、(、、)对应的为,则10组对应的。
35.通常情况下,每次充放电电流波动值越大、放电深度越深、波动时长越久对电池寿命的影响越大。因此,本发明对具有高波动性、高放电深度、波动时长久的充放电数据在表
征对电池寿命影响量时给予更大的权重,权重给予方式为:判断每组充放电数据中的与的距离是否小于第一阈值且与的距离是否小于第二阈值且与的距离小于第三阈值且与的距离小于第四阈值,若是,则将该组充放电数据加入到第一数据集中,若否,则将该组充放电数据加入到第二数据集中;这里需要说明的是,与的距离、与的距离、与的距离、与的距离为两者数值间的差值绝对值,例如与的差值绝对值。实际上,在满足与的距离小于第一阈值,而与、与、与的任意一个或多个距离不满足小于相应阈值的条件时,以数据集归集的方法求解得到的映射变量值通常并不一致,对于电池寿命预测准确度的影响也会产生不同偏差,理想情况下应当考虑这些不同情形对电池寿命预测结果的影响程度,以提高电池寿命预测准确度,但若将这些情形都考虑进来,寻映射变量值与电池寿命衰减量之间的映射关系,以及寻映射变量值、在指定期间内的充放电次数、电池寿命衰减量与理论电池寿命期间的四者关联关系的复杂度会呈指数级上升,实验过程将变得异常复杂,所以本技术中,以与的距离小于第一阈值且与的距离小于第二阈值且与的距离小于第三阈值且与的距离小于第四阈值为数据集归集条件,将满足该条件的充放电数据加入到第一数据集中,将不满足该条件的充放电数据加入到第二数据集中。加入到第一数据集中的充放电数据,我们认为其充放电电流波动值、放电深度、波动时长对电池寿命预测结果准确性的影响相较第二数据集中的充放电数据更低。
36.最后,对第一数据集中的若干组充放电数据分别进行充电量均值和放电量均值计算,得到第一充电量均值和第一放电量均值,并对第二数据集中的若干组充放电数据分别进行充电量均值和放电量均值计算,得到第二充电量均值和第二放电量均值,然后对第一充电量均值和第二充电量均值作加权求和计算,得到第一和值,对第一放电量均值和第二放电量均值作加权求和计算,得到第二和值,然后再对第一和值和第二和值作加权求和计算,所得和值为求解得到的映射变量值。
37.这里需要说明的是,在求解第一和值和第二和值时,第二充电量均值的权重大于第一充电量的权重,第二放电量的权重大于第一放电量的权重,权重分别赋予多少根据第一数据集与第二数据集之间的距离大小决定,而第一数据集与第二数据集之间的距离例如可以通过计算第一数据集与第二数据集之间的充电电流波动量均值间的差距来表征,也可以用其他变量值来表征,计算两个数据集之间的距离的具体方法由于并非本发明要求权利保护的范围,因此不做具体说明。同样地,求解映射变量值时,第二和值的权重大于第一和值的权重,具体的权重赋予方式以两个数据集之间的距离为依据,在此同样不做具体说明。
38.三、求解电池寿命衰减量建立映射变量值与电池寿命衰减量的映射关系是本技术预测电池寿命的技术关键,本发明通过以下方法构建两者间的映射关系:(1)获取与待测电池同批次出厂的实验电池在全基准充放电场景下的第一总寿命值;选择与待测电池同批次出厂的实验电池是因为该实验电池与待测电池的类型、电池出
厂性能一致,以该实验电池为对象构建起的映射变量值与电池寿命衰减量间的映射关系才具有可依据性。全基准充放电场景是一种理想的充放电场景。在理想充放电场景中,电池使用环境的温、湿度和环境盐度是恒定的,因此全基准充放电场景通常只能在实验室内完成。例如,在实验室中,对实验电池每天在晚上17:30充一次电,每次充电240分钟,每天放两次电,一次在上午8:00、8:30,另一次在下午17:00、17:30,从电池出厂到电池寿命终结,每天都执行一次这样的充放电,这个充放电场景即被认定为全基准充放电场景。而全基准充放电场景以外的充放电场景即为非基准充放电场景,也就是下述内容中提及的突变充放电场景。实验电池在全基准充放电场景下的第一总寿命值可以通过不间断的充放电实验总结而得。这里需要说明的是,针对上述一天两次放电一次充电的电池使用场景,若实验电池完全按照每天的上午8:00、8:30、下午17:00、17:30放电,下午17:30、21:30分充电进行一次充放电,等实验电池寿命终结可能需要花费数年时间,显然这样的实验过程效率过于低下。因此,可以采用上述部分一中在对指定期间进行压缩后再对待测电池进行充放电数据采集的方式来提高实验中的充放电效率。
39.(2)将实验电池营造在突变充放电场景下并保持持续时长为上述对待测电池的指定期间或指定期间对应的导通时长。本发明通过图2中所示的充放电电路来为实验电池营造突变充放电场景,具体营造方法有以下两种:方法一首先将实验电池接入到该充放电电路中。如图2所示,本发明提供的充放电电路包括驱动电路300、若干个相互间并联连接的波动调整电路400、开关电路500和控制器16(优选为bms电池管理系统)。实验电池接入后,驱动电路300根据控制器16发送的驱动指令驱动任意一个波动调整电路400导通(导通时长与采集待测电池充放电数据的指定期间相对应,达到导通时长后,驱动电路根据控制器16的驱动指令驱动该波动调整电路400截止,使得充放电电路断开),并驱动开关电路500导通,以在实验电池的正极、波动调整电路、开关电路和实验电池的负极之间形成闭合回路,然后控制器16按照预设策略控制实验电池执行充放电动作,并采集每次充放电的充放电数据。这里需要特别说明的是,实验电池充放电动作的执行策略与待测电池的实际使用场景有关。例如,待测电池的实际使用场景为:一天充一次电,每天的17:30分充电240分钟,每天放电两次,一次在上午8:00、8:30,另一次在下午17:00、17:30,那么其充放电顺序为先放电2次再充电一次,为了消除前一次放电产生的电池温度对后一次放电数据的影响,两次放电间需要留足闲置时间供前一次放电完成后进行电池降温,后一次放电完成后同样需要留足闲置时间以避免对充电数据采集产生影响。若充放电间的闲置时间为30分钟,则对于实验电池,其充放电一次的动作可以为第一次放电30分钟、闲置30分钟、第二次放电30分钟、闲置30分钟、充电240分钟、闲置30分钟,这样该实验电池完成一次充放电需要390分钟。若需要采集该实验电池20组充放电数据,则需要7800分钟,这7800分钟即为用于营造突变充放电场景的该波动调整电路需要导通的时长,这个导通时长对应待测电池在真实使用环境下的指定期间为20天。
40.本技术提供的如图2所示的充放电电路中,每个波动调整电路具有不同的充放电电流波动调整幅度和调整时长,方法一中,是采集某一个波动调整电路导通后(其他波动调整电路保持断开状态)的充放电数据,因此方法一适用电池在指定期间内每次充放电的充放电电流波动幅度和波动时长相对稳定的情形。而对于电池在指定期间内每次充放电的充
放电电流波动幅度和波动时长不稳定的情形,若使用方法一采集到的若干组充放电数据去计算映射变量值并寻该映射变量值与电池寿命衰减量之间的映射关系,然后基于这个映射关系去预测电池寿命,显然得到的预测结果并不准确。为了解决这个问题,本技术提供了第二种营造方法,即:方法二首先还是将实验电池接入到图2所示的充放电电路中;然后根据电池在真实使用场景下的历史指定期间内的每次充放电电流波动特性,选定相应的波动调整电路作为对应次充放电的突变充放电场景营造电路,选定过程具体为:例如,电池在历史的指定期间内的某次充放电中,其充电电流波动值与图2中所示的充放电电路中的某个波动调整电路可实现的充电电流波动调整幅度的差值小于预设的差值阈值,则选定该波动调整电路为该次充放电的突变充放电场景营造电路;为被选定的每个波动调整电路确定充放电的充放电时长和充放电顺序,该充放电时长即为历史指定期间内对应次充放电的充放电时长,每个被选定的波动调整电路对应的充放电时长的和值与充放电电路的导通时长相等;这里需要说明的是,每个波动调整电路的充放电顺序基于电池的真实使用情况确定。例如真实场景下,电池历史连续3次充放电的充电电流波动幅度分别为第一波动幅度、第二波动幅度和第三波动幅度,则首先使用具有第一波动幅度营造能力的波动调整电路为实验电池营造突变充放电场景,并在该突变充放电场景下首先执行一次充放电动作,该次充放电完成后,再使用具有第二波动幅度营造能力的波动调整电路为实验电池营造相应的突变充放电场景,并在该突变充放电场景下再次执行一次充放电动作,最后使用具有第三波动幅度营造能力的波动调整电路为实验电池营造突变充放电场景并执行最后的充放电动作。
41.这里需要说明的是,图2中所示的充放电电路中的每个波动调整电路包括波动幅度调整电路和波动时长调整电路,波动幅度调整电路可以为现有的具有不同充放电电流波动幅度调整能力的电阻电路构成,波动时长调整电路则为电感,每个波动调整电路中的电感的电感值并不相同。本发明利用具有不同电感值的电感所具有的不同的电流缓释能力,赋予营造在突变充放电场景下的实验电池在充电或放电时具有不同的充放电波动时长,以模拟出电池真实的充放电波动时长特性。同时利用具有不同充放电电流波动幅度调整能力的波动幅度调整电路,赋予营造在突变充放电场景下的实验电池在充电或放电时具有不同的充放电电流波动值,以模拟出电池真实的充放电波动幅度特性,并将实验电池在突变充放电场景下的充放电波动时长特性和充放电波动幅度特性作为影响电池寿命的重要因素,提高了电池寿命预测的准确度。
42.(3)采集实验电池在突变充放电场景下的若干组充放电数据并记录充放电次数,然后计算实验电池对应的映射变量值。实验电池的映射变量值的计算方法与部分二中计算待测电池的映射变量值的方法相同,在此不再赘述。
43.(4)恢复实验电池处于全基准充放电场景下,以继续对该实验电池进行寿命测试实验,得到其经历突变充放电场景后的第二总寿命值;(5)计算第一总寿命值与第二总寿命值的寿命差值作为与实验电池的映射变量值
具有映射关系的电池寿命衰减量,并形成该实验电池对应的映射变量值、电池寿命衰减量的映射关系加入到映射关系库中。
44.四、获取待测电池的理论电池寿命期间实验电池除营造的突变充放电场景,在实验过程中的其他时间一直工作在全基准充放电场景。假设在全基准充放电场景下按照固定的充放电规律进行充放电,该实验电池的额定寿命为如图3所示的累计循环充放电800次,其中从出厂到累计已充放电次数250次以内定义电池处于成长期,250次到700次之间定义电池处于成年期,700、800次之间定义电池处于老年期。假定在实验电池进入突变充放电场景之前,已经在全基础充放电场景下累计充放电280次,而在突变充放电场景的充放电次数为30次,则完成在突变充放电场景下的30次充放电后,其累计已充放电次数为310次,310次对应的电池寿命期间为图3中成年期,则这个成年期即为理论电池寿命期间。这里理论电池寿命期间与实验电池在突变充放电场景下计算的映射变量值、充放电次数、电池寿命衰减量四者之间形成了四者关联关系并存储到四者关联关系库中,同时保存了这个310次的累计已充放电次数,保存这个累计已充放电次数的目的是为了后续计算理论电池寿命期间与理想电池寿命期间的偏差。
45.五、计算待测电池的第一寿命值在实验过程中我们发现,对于处于不同电池寿命期间的实验电池,即便营造相同的突变充放电场景、在突变场景下执行完全相同的充放电行为、得到完全相同的映射变量值,最终得到的电池寿命衰减量也往往不同。由此而证明了在预测待测电池寿命的当时,待测电池所处的电池寿命期间对于电池寿命预测结果会产生直接影响。为了减少该因素对电池寿命预测结果的影响,本技术经反复实验总结,寻到了映射变量值、指定期间内充放电次数、电池寿命衰减量与理论电池寿命期间四者间的四者关联关系。后续只要获得待测电池在突变充放电场景下计算的映射变量值、充放电次数、电池寿命衰减量,然后基于这个四者关联关系即可快速匹配出其当前所处的理论电池寿命期间。四者关联关系的寻过程简述如下:如图3所示,若将电池的全寿命周期划分为成长期、成年期和老年期(可以对全寿命周期进行更小粒度的划分,划分粒度越小,电池寿命阶段越多,四者关联关系越紧致,后续预测的第一寿命值将更为准确),实验电池在全基准充放电场景下的第一总寿命值假设为可循环充放电800次,根据对电池在不同阶段性能的实验总结,将前250次定义为成长期、中间450次为成年期,最后100次为老年期。对于相同的实验电池,在成长期多次营造相同的突变充放电场景(例如在实验电池在全基准充放电场景下累计已充放电次数达到100次时或160次时或220次时等分别营造相同的突变充放电场景,相同的突变充放电场景指充放电的指定期间相同,在指定期间内的充放电次数相同,得到的映射变量值也相同),然后实验总结每次营造突变充放电场景后,实验电池的电池寿命衰减量。
46.以在成长期营造突变充放电场景并统计电池寿命衰减量为例,例如,在成长期累计已充放电次数达到100次时营造突变充放电场景,得到的电池寿命衰减量为全寿命周期循环充放电次数减少了5次,在成长期累计已充放电次数达到160次时营造突变充放电场景,得到的电池寿命衰减量为在全寿命周期循环充放电次数减少了10次,在成长期累计已充放电次数达到220次时营造突变充放电场景,得到的电池寿命衰减量为在全寿命周期循环充放电次数减少了15次,那么可以取电池寿命衰减量的均值为10次作为在成长期营造该
突变充放电场景的平均电池寿命衰减量,这样就可以形成映射变量值、在指定期间内的充放电次数、电池寿命衰减量(为平均电池寿命衰减量,即10次)、理论电池寿命期间(为成长期)的四者关联关系,只要实验的映射变量值、指定期间充放电次数、电池寿命衰减量、理论电池寿命期间的数据对数量足够多,这个四者关联关系便更加精准。其他电池寿命期间的四者关联关系可使用上述相同的方法总结而得。后续可以在形成待测电池的映射变量值、指定期间充放电次数、电池寿命衰减量数据对后,将该数据对与四者关联关系库中的每个元素进行数据匹配,将获取匹配到的元素中记载的理论电池寿命期间作为该待测电池的当前理论应当所处的理论电池寿命期间。
47.这里需要说明的是,对待测电池的映射变量值、指定期间充放电次数、电池寿命衰减量数据对与四者关联关系库中的每个元素进行匹配的匹配成功的标准为:待测电池中的映射变量值与某个元素中的映射变量值的差值绝对值、电池寿命衰减量之间的差值绝对值均小于相对应的差值阈值且在指定期间内的充放电次数相同,即判定为匹配成功。
48.另外需要说明的是,在形成四者关联关系时,实验电池除了在指定期间内工作在所营造的突变充放电场景下,其他时间都是工作在全基准充放电场景下的,因此将基于这个四者关联关系匹配到的电池寿命期间定义为待测电池的“理论电池寿命期间”,与其在真实环境下经累计已充放电次数后的理想电池寿命期间会存在偏差。理论电池寿命期间和理想电池寿命期间都不能代表对电池寿命的预测结果,但两者间产生这个偏差又恰好能够表征在实验环境与真实使用环境下对电池进行寿命预测的差异。因此,本发明利用这个偏差去计算待测电池的第一寿命值,计算方法具体为:首先,获取待测电池从出厂到经历突变充放电场景后的第一累计已充放电次数(例如为523次)、全寿命周期内的每个电池寿命期间的额定充放电次数(例如图3中所示成长期、成年期、老年期的额定充放电次数分别为250次、450次和100次)和在四联关系库中成功匹配到的元素对应的实验电池在经历突变充放电场景后的第二累计已充放电次数(例如为582次);然后,计算第一累计已充放电次数和第二已充放电次数的比值,即523/582;计算全寿命周期的额定充放电次数与第一累计已充放电次数的差值,即800、523=277;计算比值523/582与差值的277的乘值,即;计算乘值与第一累计已充放电次数的和值作为第一寿命值,即523+249=772。
49.六、对第一寿命值进行环境温湿度和环境盐度补偿上述的部分一到五中已经说明,为了降低寻映射关系以及四者关联关系的复杂度,在寻过程中并未将电池环境的温、湿度和环境盐度纳入到影响电池寿命的考量因素中。但环境温、湿度和环境盐度是影响电池寿命的重要因素,不能被忽略。因此最后一步,本发明需要对第一寿命值作温、湿度和环境盐度补偿,以校正该第一寿命值,校正后得到的第二寿命值作为对待测电池寿命的最终预测结果。对第一寿命值进行温、湿度和环境盐度补偿的方法为:在指定期间内针对待测电池采集的若干组充放电,计算待测电池在充放电过程中的环境温度的平均值、所处环境湿度平均值和环境盐度平均值;例如其中一次充
放电过程的环境温度为,另一次为,则两次充放电的环境温度的平均值为,、的计算方法同,在此不再赘述;将、、分别作为对应的拟合函数的自变量,求解得到分别对应的温度补偿系数、湿度补偿系数、环境盐度补偿系数;对第一寿命值,分别计算其与、、的乘值,结果记为、、;对、、进行加权求和得到寿命值预测结果;用于求解补偿系数、、的拟合函数通过以下公式(1)表达:公式(1)中,表示或或;表示自变量;、、分别表示二次项系数、一次项系数和常数项。
50.公式(1)表达的拟合函数在与间、与间、与间建立了映射关系,后续,只要计算得到待测电池的、、,便可以基于这个映射关系快速计算出相应的补偿系数。这个映射关系是否准确与公式(1)中的二次项系数、一次项系数和常数项这些参数的值的是否准确直接相关。所以,为了能够方便快捷且准确地得到各参数的参数值,本发明采取了以下两个手段:(1)专门提供了图1所示的自动化模拟装置;(2)通过拉格朗日多项式的插值方法拟合得到各参数的参数值。
51.以下对如何方便快捷且准确地得到各参数的参数值的方法进行着重说明:如图1所示,该自动化模拟装置包括水箱1、混合气体生成室2、混合气体处理室3和用于放置待测电池100的透明测试室4(将测试室设置为透明是为了营造真实的光环境)以及用于自动化模拟电池真实使用环境的自动化控制设备。该自动化控制设备包括图1中所示的设置在混合气体生成室2的每条输入管道上的用于切换管道通闭的第一电磁阀5、设置在混合气体生成室2内的底部的风扇21、设置在水箱1和透明测试室4之间的管路上的阀门6、第二电磁阀7、抽水泵200、带温度传感功能的速热器8以及设置在混合气体处理室3和透明测试室4之间的管路上的第三电磁阀9、抽气泵20,混合气体生成室2的输出管路通过第四电磁阀18连接到混合气体处理室3的混合气体输入口31。该自动化控制设备还包括图1中所示的设置在混合气体处理室3底部的加温设备10和设置在顶部的盐度检测器17、设置在混合气体处理室3内部的温度传感器11、设置在透明测试室4内的雾化喷头12、温度传感器13、湿度传感器14、盐度检测器15和加热设备19以及与第一电磁阀5、风扇21、第二电磁阀7、抽水泵200、速热器8、第三电磁阀9、抽气泵20、第四电磁阀18、加热设备10、盐度检测器17、温度传感器11、雾化喷头12、温度传感器13、湿度传感器14、盐度检测器15和加热设备19通信连接的控制器16。
52.本发明通过自动化模拟装置为实验电池模拟电池真实使用环境的方法如下:用户打开图1中所示的阀门6,然后在智能终端输入电池使用环境温度控制量、湿度控制量和盐度控制量形成控制指令后发送给控制器16,控制器16接收到控制指令后首先控制图1中用于通入测试环境的空气的管道上的第一电磁阀5打开,第一电磁阀5打开后,外
界空气通入到混合气体生成室2中,然后控制打开图1中的风扇21再打开图1中的第四电磁阀18,混合气体生成室2中的空气在风扇21的风力作用下经过第四电磁阀18所在的管路经混合气体处理室3的混合气体输入口31输入到混合气体处理室3中。设置在混合气体处理室3内的盐度检测器17实时检测室内盐度并反馈给控制器16,控制器16判定混合气体处理室3内的盐度未达到预设的盐度控制量时,控制器16控制图1中设置在分别用于通入盐雾和空气的管道上的两个电磁阀51、52打开,控制器16根据预先确定的管道单位时间内通入的气体量和环境盐度量分别计算电磁阀51、52的打开时间(即分别计算环境盐度和空气的通入时间),在达到通入时间后控制对应的电磁阀51或52关闭。设置在混合气体生成室2中的混合设备对通入的盐雾和空气进行充分混合得到混合盐雾,并在风扇21的风力作用下通入混合气体处理室3中。混合气体处理室3中的盐度检测器17再次检测盐度,当达到预设的盐度控制量时,控制闭合第一电磁阀5、51、52和第四电磁阀18以及风扇21,然后控制混合气体处理室3中的加热设备10对室内混合气体进行加热(加热量即为用户输入的电池使用环境温度控制量)。混合气体处理室3中的温度传感器11实时检测室内温度并将检测值发送给控制器16,控制器16判定该温度达到用户输入的电池使用环境温度控制量时,控制加热设备11停止加热,然后控制图1中的第三电磁阀9和抽气泵20打开,以将混合气体处理室3中的混合气体抽至透明测试室4中。然后控制图1中所示的第二电磁阀7打开并控制带温度传感功能的速热器8将速热温度调整到用户输入的电池使用环境温度控制量,随后控制启动抽水泵200,以将水箱1中的水泵给雾化喷头12,经雾化喷头雾化后喷洒在透明测试室4内。在雾化喷头12喷雾中,透明测试室4内的温度传感器13、湿度传感器14和盐度检测器15同时工作,将实时检测的结果分别发送给控制器16,控制器16判定湿度传感器14检测到的湿度达到用户输入的湿度控制量时,控制第二电磁阀7自动关闭并控制抽水泵200和速热器8停止工作。当温度传感器13检测到透明测试室4内的温度低于用户输入的电池使用环境温度控制量达到预设的温差阈值时,控制器16控制透明测试室4内的加热设备19自动启动加热,并在温度传感器13检测到室内温度达到电池使用环境温度控制量时控制加热设备19停止加热。当盐度检测器15检测到透明测试室4内的盐度未达到预设的盐度控制量时,重复上述的控制过程,直至透明测试室4内的温度、湿度、盐度均达到控制量要求。
53.为了分别获得以为自变量,以为因变量的第一拟合函数,以为自变量,以为因变量的第二拟合函数,以为自变量,以为因变量的第三拟合函数,在使用自动化模拟装置时,对实验电池分别进行环境温度、环境湿度、环境盐度模拟,具体方法为:经前述部分一到五的技术方案,已经预测得到了第一寿命值,这个第一寿命值的预测过程是未考虑环境温、湿度和环境盐度对电池寿命的影响的。为了逐一到环境温度、湿度和环境盐度对电池寿命预测结果的影响程度,以获得第一拟合函数为例,对于同个第一寿命值,通过图1所示的自动化模拟装置在透明测试室4中模拟不同的温度,然后获得每个模拟温度下实验电池的真实寿命值,真实寿命值与第一寿命值的除值就是这个该模拟温度下的值,这个值与模拟温度之间是具有映射关系的,这个映射关系的准确性由其第一拟合函数的各参数的参数值来表征。
54.为了得到第一拟合函数中的各参数的参数值,本发明优选采用拉格朗日多项式的插值方法以每个模拟温度和对应的值为拟合点,将各拟合点拟合为一条曲线,然后根
据该拟合曲线反推得到第一拟合函数中的各参数的参数值。同样地,获取第二拟合函数和第三拟合函数的方法与获得第一拟合函数的原理相同,在此不再赘述。
55.综合以上六个部分的技术方案,总结得到本技术提供的电池寿命预测方法的实现过程如图4所示,包括以下几个步骤:s1,采集待测电池在真实使用环境下的指定期间内每次充放电的充放电数据;s2,根据若干组充放电数据计算待测电池的映射变量值;s3,基于映射变量值与电池寿命衰减量的映射关系,得到待测电池经指定期间的若干次充放电后的电池寿命衰减量;s4,形成待测电池的映射变量值、指定期间内充放电次数、电池寿命衰减量数据对,然后将该数据对与四者关联关系库中的各元素进行数据匹配,以获取成功匹配的元素中的记载的理论电池寿命期间;s5,根据待测电池的累计已充放电次数估算其理想电池寿命期间,并计算理论电池寿命期间与理想电池寿命期间的偏差,然后利用偏差计算待测电池的第一寿命值;s6,对第一寿命值进行温、湿度补偿和环境盐度补偿后得到第二寿命值作为对待测电池最终的寿命值预测结果。
56.需要声明的是,上述具体实施方式仅仅为本发明的较佳实施例及所运用技术原理。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等。但是,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。另外,本技术说明书和权利要求书所使用的一些术语并不是限制,仅仅是为了便于描述。


文章投稿或转载声明

本文链接:http://www.wtabcd.cn/zhuanli/patent-13-942-0.html

来源:专利查询检索下载-实用文体写作网版权所有,转载请保留出处。本站文章发布于 2022-11-27 21:19:09

发表评论

验证码:
用户名: 密码: 匿名发表
评论列表 (有 条评论
2人围观
参与讨论