本文作者:kaifamei

基于知识图谱的视觉问答处理方法、设备及存储介质与流程

更新时间:2025-01-08 18:05:52 0条评论

基于知识图谱的视觉问答处理方法、设备及存储介质与流程



1.本发明属于视觉问答技术领域,具体来说是一种基于知识图谱的视觉问答处理方法、设备及存储介质。


背景技术:

2.文旅客服领域存在大量提问频次高、流程固定繁琐、重复性高的问题,人工客服服务过程不仅会感到枯燥而且学习和回复的时间成本高,使用智能问答代替人工客服完成一部分重复工作,可以帮助企业在节省人力成本的同时提高服务效率。然而对于图片和文本结合的视觉问答形式智能客服目前难以有效的进行回复,依旧依赖于人工客服的处理。
3.基于图片和文本结合的视觉问答难以实现智能客服的原因,很大一部分来自于人工智能无法有效的识别文本与图像中对象物的关系。


技术实现要素:

4.为解决或部分解决上述技术问题,本发明提供一种于知识图谱的视觉问答处理方法、设备及存储介质,本发明方案在视觉特征和文本问题特征获取后,通过知识图谱构建对象物之间的关系,通过预训练的预训练的transh模型获取对于的知识图谱特征,将视觉特征、文本问题特征和知识图谱特征融合,基于融合特征获取概率最高的候选答案,实现视觉问答,具体技术方案如下:一种基于知识图谱的视觉问答处理方法,包括如下步骤:获取待处理图像和待处理文本;将待处理图像输入faster r-cnn网络进行特性提取,获取所述待处理图像的第一图像特征集合,所述第一图像特征集合为所述待处理图像所有图像特征的集合,将第一图像特征中的图像特征对应嵌入待处理图像中,输出第一图像特征向量;其中,所述图像特征包括待处理图像中对象物相应的类别标签、对象物空间位置关系和对象属性;将待处理文本序列化并通过glove词嵌入模型进行特征向量提取得到文本向量集合;所述文本向量集合为待处理文本每个单词对应的词向量组成的集合;基于gru处理所述文本向量集合中每个单词对应的词向量的嵌入序列以得到第一文本特征向量;将第一图像特征向量基于图像空间注意力机制进行处理,得到第二图像特征向量;将第一文本特征进行注意力机制处理得到第二文本特征向量;根据第一图像特征集合及第一文本特征构建待处理图像对应的关联知识图谱,将处理图像对应的关联知识图谱输入预训练的transh知识表示模型得到第一知识图谱特征;将第二图像特征向量、第二文本特征向量机第一知识图谱特征进行特征融合得到图像问答特征,将图像问答特征输入预训练的答案分类器获取概率最高的类别作为输出候选答案。
5.作为优选,所述处理图像对应的关联知识图谱的构建步骤包括:获取第一图像特征集合中对象物的类别标签和对象属性,根据对象属性和类别标签并基于第一文本特征向量获取主体对象和背景对象,以主体对象为中心节点、背景对象为周边节点,以节点和边的的方式生成若干关联子图,以边缘节点关联权重将生成的若干关联子图合并为关联知识图谱。
6.作为优选,所述第一文本特征向量满足如下公式:fq=gru(wq);式中,wq={w1,w2,......,wq};wi为序列为i的单词对应的词向量。
7.作为优选,所述将第二图像特征向量、第二文本特征向量机第一知识图谱特征进行特征融合得到图像问答特征满足如下公式:fr=mfb(fqa,fia,fga);其中,fr为图像问答特征,fqa为第二文本特征向量,fia为第二图像特征向量,fga为第一知识图谱特征,采用mfb进行多模态融合。
8.第二方面,提供一种计算机设备,包括一个或多个处理器;存储器,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器执行如上述第一方面所述的方法。
9.第三方面,提供一种存储有计算机程序的存储介质,该程序被处理器执行时实现如上述第一方面所述的方法。
10.本发明的好处在于:1. 通过将基于注意力机制的视觉特征、文本特征和知识图谱特征进行融合,有效提升图像与问题关联识别的准确性,从而提升视觉问答的准确率;2. 通过faster r-cnn网络进行图像特性提取,能够获取后续知识图谱构建所需的对象物属性、位置关系等重要信息,提升整体识别效率。
附图说明
11.图1为本发明一实施例提供的一种方法流程示意图。
12.图2为本发明一实施例提供的一种计算机设备的结构示意图。
具体实施方式
13.以下结合具体实施例和说明书附图对本发明做出进一步清楚详细的描述说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
14.实施例:本实施例提供了一种基于知识图谱的视觉问答处理方法,如图1所示,包括如下步骤:获取待处理图像和待处理文本;
将待处理图像输入faster r-cnn网络进行特性提取,获取所述待处理图像的第一图像特征集合,所述第一图像特征集合为所述待处理图像所有图像特征的集合,将第一图像特征中的图像特征对应嵌入待处理图像中,输出第一图像特征向量;其中,所述图像特征包括待处理图像中对象物相应的类别标签、对象物空间位置关系和对象属性;将待处理文本序列化并通过glove词嵌入模型进行特征向量提取得到文本向量集合;所述文本向量集合为待处理文本每个单词对应的词向量组成的集合;基于gru处理所述文本向量集合中每个单词对应的词向量的嵌入序列以得到第一文本特征向量;将第一图像特征向量基于图像空间注意力机制进行处理,得到第二图像特征向量,将第一文本特征进行注意力机制处理得到第二文本特征向量;根据第一图像特征集合及第一文本特征构建待处理图像对应的关联知识图谱,将处理图像对应的关联知识图谱输入预训练的transh知识表示模型得到第一知识图谱特征;将第二图像特征向量、第二文本特征向量机第一知识图谱特征进行特征融合得到图像问答特征,将图像问答特征输入预训练的答案分类器获取概率最高的类别作为输出候选答案。
15.具体的,所述处理图像对应的关联知识图谱的构建步骤包括:获取第一图像特征集合中对象物的类别标签和对象属性,根据对象属性和类别标签并基于第一文本特征向量获取主体对象和背景对象,以主体对象为中心节点、背景对象为周边节点,以节点和边的方式生成若干关联子图,以边缘节点关联权重将生成的若干关联子图合并为关联知识图谱。
16.进一步的,所述第一文本特征向量满足如下公式:fq=gru(wq);式中,wq={w1,w2,......,wq};wi为序列为i的单词对应的词向量。
17.进一步的,所述将第二图像特征向量、第二文本特征向量机第一知识图谱特征进行特征融合得到图像问答特征满足如下公式:fr=mfb(fqa,fia,fga);其中,fr为图像问答特征,fqa为第二文本特征向量,fia为第二图像特征向量,fga为第一知识图谱特征,采用mfb进行多模态融合。
18.本发明的好处在于通过将基于注意力机制的视觉特征、文本特征和知识图谱特征进行融合,有效提升图像与问题关联识别的准确性,从而提升视觉问答的准确率;通过faster r-cnn网络进行图像特性提取,能够获取后续知识图谱构建所需的对象物属性、位置关系等重要信息,提升整体识别效率。
19.图2为本发明一实施例提供的一种设备的结构示意图。
20.如图2所示,作为本发明的又一实施例,提供一种计算机设备100,包括一个或多个中央处理单元(cpu)101,其可以根据存储在只读存储器(rom)102中的程序或者从存储部分108加载到随机访问存储器(ram)103中的程序而执行各种适当的动作和处理。在ram103中,还存储有设备100操作所需的各种程序和数据。cpu101、rom102以及ram103通过总线104彼
此相连。输入/输出(i/o)接口105也连接至总线104。
21.以下部件连接至i/o接口105:包括键盘、鼠标等的输入部分106;包括诸如阴极射线管(crt)、液晶显示器(lcd)等以及扬声器等的输出部分107;包括硬盘等的存储部分108;以及包括诸如lan卡、调制解调器等的网络接口卡的通信部分109。通信部分109经由诸如因特网的网络执行通信处理驱动器110也根据需要连接至i/o接口105。可拆卸介质111,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器110上,以便于从其上读出的计算机程序根据需要被安装入存储部分108。
22.特别地,根据本技术公开的实施例,上述实施例1所描述的方法可以被实现为计算机软件程序。例如,本技术公开的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,所述计算机程序包含用于执行上述任一实施例描述的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分109从网络上被下载和安装,和/或从可拆卸介质111被安装。
23.作为又一方面,本技术还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例的装置中所包含的计算机可读存储介质;也可以是单独存在,未装配入设备中的计算机可读存储介质。计算机可读存储介质存储有一个或者一个以上程序,该程序被一个或者一个以上的处理器用来执行描述于本技术的方法。
24.附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这根据所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以通过执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以通过专用硬件与计算机指令的组合来实现。
25.描述于本技术实施例中所涉及到的单元或模块可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元或模块也可以设置在处理器中,例如,各所述单元可以是设置在计算机或移动智能设备中的软件程序,也可以是单独配置的硬件装置。其中,这些单元或模块的名称在某种情况下并不构成对该单元或模块本身的限定。
26.以上描述仅为本技术的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本技术中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离本技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本技术中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。


文章投稿或转载声明

本文链接:http://www.wtabcd.cn/zhuanli/patent-11-1088-0.html

来源:专利查询检索下载-实用文体写作网版权所有,转载请保留出处。本站文章发布于 2022-11-27 21:27:13

发表评论

验证码:
用户名: 密码: 匿名发表
评论列表 (有 条评论
2人围观
参与讨论