本文作者:kaifamei

一类卤代噻唑类宽带隙聚合物及其在光电器件中的应用

更新时间:2024-11-15 13:54:10 0条评论

一类卤代噻唑类宽带隙聚合物及其在光电器件中的应用



1.本发明属于光电材料及其器件技术领域,具体涉及一类卤代噻唑类宽带隙聚合物及其在光电器件中的应用。


背景技术:



2.能源问题,及其所衍生的环境、战争等种种难题,已成为当前人类生存面临的巨大挑战。太阳能技术是解决能源短缺和环境污染等问题的有效途径之一。为实现这种清洁、安全、可再生能源技术的大规模推广和利用,一方面需要从材料和工艺改善的角度解决现有光伏技术(如晶体硅、铜铟镓硒以及砷化镓等)工艺繁杂、成本高等关键问题;另一方面,需要开发新型光伏材料以及发展新型低成本光伏技术。
3.有机太阳能电池(osc)作为一种新型薄膜光伏技术,因具有质轻、柔性、大面积低成本制备、光伏材料高度可调等诸多现有光伏技术无法比拟优点,成为新能源领域的研究热点(science,2011,332,293)。近年来,通过新材料的设计合成、活性层形貌的调控、器件结构的优化以及工作机制的深入研究,器件效率获得了极大的提升(advanced science,2020,7(7):1903419;science china chemistry,2020(3):6)。目前,最有效的oscs采用了基于非富勒烯受体(nfa)的活性层,具有体外异质结(bhj)结构,其中p型供体材料和nfa混合形成相互渗透的网络,以实现高效的激子分离和载流子传输(nature,1995,376(6540):498-500;science,1995,270(5243):1789-1791)。并且非富勒烯小分子受体材料的迅速崛起,打破常规将电池器件效率提升到新的高度,超过了18%(advanced materials,2020,32(19):1908205)。而效率的突破和提升,同时也离不开聚合物给体材料的设计和匹配;可为实现低碳能源提供更有希望的途径。在已报道高性能有机太阳能电池中,相比于富勒烯受体材料,非富勒烯小分子受体材料吸收谱宽可拓展到近红外区域(~1000nm),且在较低的电荷分离驱动下,使有机光伏材料中的激子也可高效的分离,产生电荷。在bhj混合物中,nfas可以与聚合物给体材料在能量水平上更好地匹配,产生更低能量损失(v
loss
),从而实现更高的pce。因此设计与之匹配的聚合物给体材料,其关键问题可以归纳为带隙、聚集和光伏性质之间的平衡。


技术实现要素:



4.本发明的主要目的在于针对现有技术存在的不足,提供一类以bdt为d单元、卤代噻唑为a单元的宽带隙聚合物,该类宽带隙聚合物具有制备步骤简单、成本低、平面性好、可大量制备、较低的homo、与非富勒烯受体材料能级匹配、吸收互补、较小的能量损失、较高的电荷迁移率、较好的结晶性以及较强的π-π堆积等优点,可用作电子给体材料或者电子传输层材料,在有机太阳能电池、钙钛矿太阳能电池等光电器件领域具有良好的商业化应用前景。
5.为实现上述目的,本发明采用的技术方案为:
6.一类卤代噻唑类宽带隙聚合物,它为以bdt为给电子单元和卤代噻唑为缺电子单
元的宽带隙聚合物,结构式见式i:
[0007][0008]
式中,r1为c1~c
20
的烷基或烷基上一个碳原子被氧原子、硫原子中的一种官能团取代;x选自h、cl或f;r选自cl或f;选自烷基呋喃、烷基噻吩、烷基锡吩或烷基并二噻吩等;n取值为10~100。
[0009]
上述方案中,所述卤代噻唑类宽带隙聚合物的分子量为1万~50万。
[0010]
进一步地,所述缺电子单元(a单元)的结构式见式ii;
[0011][0012]
具体选自以下结构:
[0013][0014]
其中r选自cl或f;r2选自碳数为1~30的烷基链。
[0015]
优选的,所述r2选自碳数为8-16的烷基链。
[0016]
上述一种卤代噻唑类宽带隙聚合物的制备方法,包括如下步骤:将基于bdt的给电子单元单体(d单元)、基于卤代噻唑的受电子单元单体(a单元)和催化剂加入有机溶剂中混合均匀,然后在110~150℃和保护气氛下,反应24~72h;其中给电子单元单体、受电子单元单体和催化剂的摩尔比为1:1:(0.02~0.05)。
[0017]
上述方案中,所述受电子单元单体的结构式见式iii,给电子单元单体的结构式见式iv:
[0018][0019]
上述方案中,所述催化剂为四(三苯基膦)钯或三二亚苄基丙酮二钯;有机溶剂为甲苯、氯苯或邻二甲苯。
[0020]
上述方案中,所述保护气氛可选用氮气等气氛。
[0021]
上述方案中,所述基于卤代噻唑的受电子单元单体的制备方法包括如下步骤:
[0022]
将2、4、5-三溴噻唑和单元单体溶于有机溶剂中,在催化剂、100~150℃和保护气氛下进行一次反应,得到黄油状液体i;然后在-78℃加入正丁基锂进行二次反应后,加入卤代试剂,进行三次反应得到黄油状液体ii;最后引入nbs进行四次反应上溴,即得所述基于卤代噻唑的受电子单元单体(a单元单体)。
[0023]
上述方案中,所述单元单体的制备方法包括如下步骤:在无水、无氧和-78℃的条件下加入噻吩、呋喃、硒吩或并二噻吩和正丁基锂进行反应,随后在常温加入溴代烷烃(烷基碳数为1~30),反应过夜,得到单元单体。
[0024]
上述方案中,所述单元单体中,引入的烷基碳数为1~30。
[0025]
上述方案中,所述一次反应采用的催化剂为四三苯基膦钯;反应时间为2~24h。
[0026]
上述方案中,所述2、4、5-三溴噻唑和单元单体的摩尔比为1:(2~2.2)。
[0027]
上述方案中,所述二次反应时间为1~2h。
[0028]
上述方案中,所述卤代试剂可选用n-氟代双苯磺酰胺或n-氯代酞酰亚胺等。
[0029]
上述方案中,所述三次反应温度为50~100℃,时间为10~18h。
[0030]
上述方案中,所述四次反应温度为0~60℃,时间为2~24h。
[0031]
上述方案中,所述d单元单体的制备方法包括如下步骤:
[0032]
在无水无氧的条件下,将3-氯噻吩溶于四氢呋喃(thf)中,滴加等摩尔量的二异丙基氨基锂(lda),常温反应1~1.5h后,加入溴代烷烃,回流搅拌过夜;然后采用水进行猝灭,萃取,干燥去除溶剂,减压蒸馏,得无油状液体;然后在保护气氛下,加入四氢呋喃,在冰浴下加入等摩尔量的二异丙基氨基锂反应1~1.5h随后,恢复至室温加入bdt升温至40~50℃反应1.5~2h然后降至室温加入sncl2和盐酸,回流过夜;用水猝灭,萃取,干燥后旋蒸除去溶剂,硅胶柱谱分离提纯,洗脱剂为石油醚,得黄固体;最后溶解于四氢呋喃中加入正丁基锂于-78℃反应1~2h,再加入三甲基氯化锡反应0.5~1h再升温至室温反应过夜;制备成d单元单体。
[0033]
上述方案中,所述溴代烷烃的碳原子数为1~20。
[0034]
本发明还包括以bdt为d单元和卤代噻唑为a单元的宽带隙聚合物作为活性层材料或传输层材料在光电器件中的应用。
[0035]
具体地,上述宽带隙聚合物材料可用于有机太阳能电池、钙钛矿太阳能电池、有机发光二极管、有机探测器等。
[0036]
与现有技术相比,本发明的有益效果为:
[0037]
1)a单元单体的噻唑结构引入卤素原子(cl或f),能够使得聚合物具有更低的homo能级、更高的开路电压、更好的吸收、更好的分子平面性和更强的π-π堆积;噻唑中c=n双键可有效的提高分子的平面性和堆积性,进一步引入烷基呋喃、烷基噻吩、烷基锡吩或烷基并二噻吩,不仅能够调整homo能级和吸光能力,使所得聚合物给体能够很好的与受体的能级与吸收相匹配,还能通过引入的烷基链,调高聚合物的溶解性;且连接π桥后可以增加聚合物的π-π堆积,使得紫外吸收红移,进一步提高光的吸收能力,提高了j
sc

[0038]
2)所得聚合物为宽带隙聚合物,相比于窄带隙聚合物,能够与窄带隙非富勒烯受体形成更好的能级匹配,有效提高光伏性能;将其作为给体材料应用于有机太阳能电池或者半透明电池,能够有效提升光电转换效率;
[0039]
3)本发明所述宽带隙聚合物材料中的a单元料来源广、制备步骤简单、成本低、能够大量制备。
附图说明
[0040]
图1为本发明所得聚合物8分别在邻二氯苯溶液(室温)和薄膜状态下的紫外-可见吸收光谱。
[0041]
图2为本发明所得聚合物8的电化学循环伏安曲线,以0.1m四丁基六氟磷酸铵的无水乙腈溶液作为电解质溶液,扫描速率为0.1v/s。
具体实施方式
[0042]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
[0043]
实施例1
[0044]
一种以卤代bdt为d单元和卤代噻唑为a单元的宽带隙聚合物,其制备方法包括如下步骤:
[0045]
(1)2,5-噻吩取代的卤代噻唑缺电子单元制备,其合成路线如下:
[0046][0047]
具体制备步骤如下:
[0048]
1-1)在单口烧瓶中,将2,4-二溴噻唑(4.86g,20mmol)溶解于乙酸中,冰浴加入nbs(5.34g,30mmol);随后移至室温反应,点板监测;反应结束后,用大量的二氯甲烷和饱和nacl萃取,合并有机相,以无水naso4干燥后,除去溶剂;然后通过柱层析法进行提纯,洗脱剂为石油醚/二氯甲烷(体积比1:1),得到白固体1(5.47g,产率85%);
[0049]
1-2)在无水无氧的条件下,向两颈烧瓶中加入三丁基(4-(2-乙基己基)噻吩-2-基)锡烷(1.94g,2mmol)、2,4,5-三溴噻唑(0.64g,2mmol)和四三苯基膦钯(0.12g,0.1mmol),溶于dmf后在150℃条件下反应2~24h;反应结束后,用大量的二氯甲烷和饱和nacl萃取,合并有机相,以无水naso4干燥后,除去溶剂;然后通过柱层析法进行提纯,洗脱剂为石油醚/二氯甲烷(体积比2:1),得到黄油状液体2(0.55g,产率50%);
[0050]
1-3)在无水无氧和在-78℃条件下,向两颈烧瓶加入化合物2(1.11g,2mmol)和正丁基锂(1.25ml,2.4m),反应1h;然后再加入n-氟代双苯磺酰胺(1.26g,4mmol),随后移至常温反应过夜;反应结束后,用大量的二氯甲烷和饱和nacl萃取,合并有机相,以无水naso4干燥后,除去溶剂;然后通过柱层析法进行提纯,洗脱剂为石油醚/二氯甲烷(体积比2:1),得到黄油状液体3(0.39g,产率40%);
[0051]
1-4)将化合物3(0.49g,1mmol)溶于和乙酸(体积比为1:1),溶解后避光常温加入nbs(0.356g,2mmol),反应过夜;用去离子水猝灭,加入二氯甲烷进行萃取,无水naso4干燥后,除去溶剂,用硅胶柱谱分离提纯,洗脱剂为石油醚/二氯甲烷(体积比为2:1)黄油状液体4(0.51g,产率80%)。
[0052]
(2)氯代bdt给电子单元的制备,具体合成路线下:
[0053][0054]
具体制备步骤如下:
[0055]
2-1)在无水无氧的条件下,将3-氯噻吩(4.74g,40mmol)溶于50ml无水的thf,缓慢匀速的滴加等摩尔量的二异丙基氨基锂(lda),常温反应1h后,加入溴代异辛烷(8.5g,44mmol),40℃搅拌过夜;反应结束后,去离子水猝灭,石油醚进行萃取,然后用无水naso4干燥后,除去溶剂后进行减压蒸馏,获得无油状液体化合物5(8.49g,产率92%);
[0056]
2-2)氮气保护下,加入50ml thf和化合物7(2.03g,8.8mmol),冰浴下加入等量lda反应1h;随后,恢复到室温加入bdt(0.881g,4mmol),升温至50℃反应1.5h;然后,降至室温加入sncl2·
2h2o(7.22g,32mmol)和10ml10%浓度的hcl,回流过夜。用去离子水猝灭,加入石油醚进行萃取,无水naso4干燥后旋蒸除去溶剂,硅胶柱谱分离提纯,洗脱剂为石油醚,得到黄固体状化合物6(2.33g,产率89.9%);
[0057]
2-3)在无水无氧的条件下,将黄固体8(1.295g,2mmol)溶于30ml thf中,在-78℃下加入正丁基锂(4.4mmol)反应1h;随后,加入三甲基氯化锡(0.896g,4.5mmol),反应30min后,升温至室温过夜;反应结束后,蒸馏水猝灭,用二氯甲烷和饱和nacl溶液进行萃取,然后加入无水naso4干燥后旋蒸除去溶剂,真空泵抽干得到产物7(1.27g,产率85.2%)。
[0058]
(3)宽带隙聚合物的制备,其合成路线如下:
[0059][0060]
具体制备步骤如下:在氮气保护下,依次加入化合物4(0.129g,0.2mmol)和化合物7(0.195g,0.2mmol),催化剂pd(pph3)4(0.012g,0.01mmol)和5ml无水甲苯,110℃反应48h;所得粗产物用甲醇沉降,随后依次用丙酮、正己烷、二氯甲烷、进行抽提;旋蒸,加入甲醇沉降,抽滤得最终宽带隙聚合物产物8(0.186g,产率80%)。
[0061]
将本实施例所得聚合物8分别进行光学性能和电化学性能等测试,结果分别见下图1、图2。
[0062]
由图1所示,在浓度为10-2
mg/ml的邻二氯苯溶液中,所得聚合物8显示了两个特征的吸收峰:短波长的吸收峰为353nm,归结为化合物中侧链的π-π电子跃迁引起的;长波长处
的吸收峰位于531nm,归结于化合物中主体结构的π-π电子跃迁引起的。除此之外,位于569nm处出现的吸收峰为肩峰,吸光系数稍高于长波处吸收峰。
[0063]
将所得8溶解于氯仿中,配制浓度为0.1g/ml的溶液,再通过旋转蒸发镀膜得到厚度为80~160nm的薄膜。薄膜状态下,聚合物8显示的特征峰比溶液状态下红移了8nm,同时吸收范围变宽,肩峰更高,表明形成的薄膜结构中具有更强的π-π堆积,利于获得高的载流子迁移率。聚合物8薄膜边缘吸收为645nm,根据公式eg=1240/λ计算可得,带隙eg为1.92ev,为宽带隙聚合物。
[0064]
利用电化学循环伏安法测试聚合物8的氧化还原过程,得到相对于二茂铁的起始氧化还原电位,进而可以估算出对应材料的前线轨道能级(humo能级和lumo能级):采用三电级体系,将合成的聚合物8溶解在氯仿中,配成浓度为5mg/ml的溶液滴玻碳电极上制备成薄膜,然后将其置于含0.1m四丁基六氟磷酸铵的乙腈电解质溶液中进行测试,测试整个过程需要氮气保护,扫描速率为0.1v/s,结果见图2。从图2中可知:聚合物8在阳极具有不可逆的氧化还原过程,对应的起始氧化电位为0.78v。根据公式humo=-(e
ox,onset
+4.8)ev,我们可以计算出聚合物8的humo能级为-5.58ev。lumo能级根据材料的光学带隙和humo获得为-3.66ev(lumo=humo+eg)。
[0065]
由图1和图2可以看出聚合物8与报道的非富勒烯受体材料y6之间有很好的能级匹配和互补吸收,且制备的器件可获得较高的开路电压以及较小的能量损失。将本发明所得聚合物8作为给体材料应用于有机太阳能电池中,可获得较高的光电效率。
[0066]
实施例2
[0067]
一种以卤代bdt为d单元和卤代噻唑为a单元的宽带隙聚合物,其制备方法包括如下步骤:
[0068]
(1)2,5-噻吩取代的卤代噻唑缺电子单元制备,其合成路线如下:
[0069][0070]
具体制备步骤如下:
[0071]
1-1)在单口烧瓶中,将2,4-二溴噻唑(4.86g,20mmol)溶解于乙酸中,冰浴加入nbs(5.34g,30mmol);随后移至室温反应,点板监测;反应结束后,用大量的二氯甲烷和饱和nacl萃取,合并有机相,以无水naso4干燥后,除去溶剂;然后通过柱层析法进行提纯,洗脱剂为石油醚/二氯甲烷(体积比1:1),得到白固体1(5.47g,产率85%);
[0072]
1-2)在无水无氧的条件下,向两颈烧瓶中加入三丁基(4-(2-乙基己基)噻吩-2-基)锡烷(1.94g,2mmol)、2,4,5-三溴噻唑(0.64g,2mmol)和四三苯基膦钯(0.12g,0.1mmol),溶于dmf后在100~120℃条件下反应2~24h;反应结束后,用大量的二氯甲烷和饱和nacl萃取,合并有机相,以无水naso4干燥后,除去溶剂;然后通过柱层析法进行提纯,洗脱剂为石油醚/二氯甲烷(体积比2:1),得到黄油状液体9(0.45g,产率40%);
[0073]
1-3)在无水无氧和在-78℃条件下,向两颈烧瓶加入化合物2(1.11g,2mmol)和正丁基锂(1.25ml,2.4m),反应1h;然后再加入n-氟代双苯磺酰胺(1.26g,4mmol),随后移至常温反应过夜;反应结束后,用大量的二氯甲烷和饱和nacl萃取,合并有机相,以无水naso4干燥后,除去溶剂;然后通过柱层析法进行提纯,洗脱剂为石油醚/二氯甲烷(体积比2:1),得到黄油状液体10(0.24g,产率25%);
[0074]
1-4)将化合物3(0.49g,1mmol)溶于和乙酸(体积比为1:1),溶解后避光常温加入nbs(0.356g,2mmol),反应过夜;用去离子水猝灭,加入二氯甲烷进行萃取,无水naso4干燥后,除去溶剂,用硅胶柱谱分离提纯,洗脱剂为石油醚/二氯甲烷(体积比为2:1)黄油状液体11(0.44g,产率70%)
[0075]
(2)宽带隙聚合物的制备,其合成路线如下:
[0076][0077]
具体制备步骤如下:
[0078]
在氮气保护下,依次加入化合物4(0.129g,0.2mmol)和化合物7(0.195g,0.2mmol),催化剂pd(pph3)4(0.012g,0.01mmol)和5ml无水甲苯,110℃反应48h;所得粗产物用甲醇沉降,随后依次用丙酮、正己烷、二氯甲烷、进行抽提;旋蒸,加入甲醇沉降,抽滤得最终宽带隙聚合物产物12(0.209g,产率90%)。
[0079]
本发明所述新型卤代噻唑类宽带隙聚合物展现出较高好的光谱吸收和能级分布以及堆积能力,使得这类聚合物材料在有机光电材料类中拥有广泛的应用。同时,可以进一步通过对噻唑单体进行优化,为其在光电子应用方面起到重要的作用。
[0080]
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

技术特征:


1.一类卤代噻唑类宽带隙聚合物,其特征在于,它为以bdt为给电子单元和卤代噻唑为缺电子单元的宽带隙聚合物,结构式见式i:式中,r1为c1~c
20
的烷基或烷基上一个碳原子被氧原子、硫原子中的一种官能团取代;x选自h、cl或f;r选自cl或f;选自烷基呋喃、烷基噻吩、烷基锡吩或烷基并二噻吩;n取值为10~100。2.根据权利要求1所述的卤代噻唑类宽带隙聚合物,其特征在于,所述卤代噻唑类宽带隙聚合物的分子量为1万~50万。3.根据权利要求1所述的卤代噻唑类宽带隙聚合物,其特征在于,所述缺电子单元(a单元)的结构式见式ii;其中,r选自cl或f。4.权利要求1~3任一项所述卤代噻唑类宽带隙聚合物的制备方法,其特征在于,包括如下步骤:将基于bdt的给电子单元单体、基于卤代噻唑的受电子单元单体和催化剂加入有机溶剂中混合均匀,然后在110~150℃和保护气氛下,反应24~72h;其中给电子单元单体、受电子单元单体和催化剂的摩尔比为1:1:(0.02~0.05)。5.根据权利要求4所述的制备方法,其特征在于,所述受电子单元单体的结构式见式iii,给电子单元单体的结构式见式iv:6.根据权利要求4所述的制备方法,其特征在于,所述催化剂为四(三苯基膦)钯或三二亚苄基丙酮二钯;有机溶剂为甲苯、氯苯或邻二甲苯。7.根据权利要求4所述的制备方法,其特征在于,所述基于卤代噻唑的受电子单元单体
的制备方法包括如下步骤:将三溴噻唑和单元单体溶于有机溶剂中,在催化剂、100~150℃和保护气氛下进行一次反应,得到黄油状液体i;然后在-78℃加入正丁基锂进行二次反应后,加入卤代试剂,进行三次反应得到黄油状液体ii;最后引入nbs进行四次反应上溴,即得所述基于卤代噻唑的受电子单元单体。8.根据权利要求7所述的制备方法,其特征在于,所述单元单体的制备方法包括如下步骤:在无水无氧和-78℃的条件下加入噻吩、呋喃、硒吩或并二噻吩和正丁基锂进行反应,随后在常温加入溴代烷烃,反应过夜,得到单元单体。9.权利要求1~3任一项所述的卤代噻唑类宽带隙聚合物或权利要求4~8任一项所述制备方法制备的卤代噻唑类宽带隙聚合物作为活性层材料或传输层材料在光电器件中的应用。

技术总结


本发明公开了一类卤代噻唑类宽带隙聚合物,它为以BDT为给电子单元和卤代噻唑为缺电子单元形成的宽带隙聚合物。本发明所述宽带隙聚合物具有较低的HOMO、与非富勒烯受体材料能级匹配、吸收互补,具有较小的能量损失、较高的电荷迁移率、较好的结晶性以及较强的π-π堆积,在带隙为1.8~2.2eV范围内具有较好的吸收、较深的最高占有空轨道和更好的平面性;且涉及的制备方法较简单、成本较低,可大量制备;该宽带隙聚合物可用作电子给体材料或电子传输层材料,在有机太阳能电池、钙钛矿太阳能电池等光电器件领域具有良好的商业化应用前景。池等光电器件领域具有良好的商业化应用前景。


技术研发人员:

刘治田 朱晓东 高建宏 何燕君 冯继宝 石东明

受保护的技术使用者:

武汉工程大学

技术研发日:

2022.09.30

技术公布日:

2023/1/17


文章投稿或转载声明

本文链接:http://www.wtabcd.cn/zhuanli/patent-1-88633-0.html

来源:专利查询检索下载-实用文体写作网版权所有,转载请保留出处。本站文章发布于 2023-01-30 04:56:02

发表评论

验证码:
用户名: 密码: 匿名发表
评论列表 (有 条评论
2人围观
参与讨论