一种微纳米片状聚氨酯增强碳纤维复合材料及其制备方法
1.本发明涉及复合材料领域,尤其涉及一种微纳米片状聚氨酯增强碳纤维复合材料及其制备方法。
背景技术:
2.随着航空航天领域以及汽车制造业的高速发展,人们对于高强度高阻尼复合材料的需求日益增加。增强型高阻尼碳纤维复合材料具有比模量大、阻尼损耗性能优越的特性,已广泛在电子、医疗和航空等领域发挥着重要的作用。
3.目前,增强型高阻尼碳纤维复合材料多采用橡胶片来对碳纤维环氧树脂基复合材料进行增强。橡胶片通常采用的是已硫化的橡胶,其分子活性和耐候性较弱,橡胶片的硫化特性与环氧树脂基体的固化机理不一致,容易导致阻尼材料和环氧树脂无法共同固化,使整个结构界面结合强度变弱。可见,现有的增强型高阻尼碳纤维复合材料无法同时改善阻尼性能和力学性能。
技术实现要素:
4.本发明针对现有技术中的不足,提供一种微纳米片状聚氨酯增强碳纤维复合材料及其制备方法。
5.第一方面,本技术提供一种微纳米片状聚氨酯增强碳纤维复合材料的制备方法,包括如下步骤:步骤1:将制备好的微纳米片状聚氨酯加入到乙醇溶液中,超声振荡、加热,得到聚氨酯的乙醇悬浮液;步骤2:将干燥的环氧树脂加入所述聚氨酯的乙醇悬浮液中搅拌,充分混合后加热干燥,加入固化剂并充分混合后,双面刷涂到碳纤维布上;步骤3:将所述碳纤维布上依次铺置有孔隔离膜、透气毡、真空膜,密封后抽真空,制得环氧树脂预浸料;步骤4:将所述环氧树脂预浸料堆叠5-10层,双面挤压并烘干,得到微纳米片状聚氨酯增强碳纤维复合材料,其中,所述微纳米片状聚氨酯的制备方法包括:将间甲苯异氰酸酯、二甲基硅油与乙酸乙酯充分混合,加入质量分数为0.85 wt%的阿拉伯胶水混合,剧烈搅拌5-10分钟,制得稳定的乳液体系;将聚乙二醇加入上述乳液体系中,搅拌5分钟,加入三乙烯四胺反应40分钟后,加热至50℃,保温120分钟,得到微纳米体系;将三乙烯四胺加入上述微纳米体系,反应50分钟后洗涤,在50℃下干燥24小时,得到微纳米片状聚氨酯。
6.步骤3中可以在碳纤维布下铺放一层隔离纸,保证力学性能稳定,避免出现变形的缺陷。由于单层结构上应用碳纤维增强复合材料在工程上的局限性,因此,本技术提供的微纳米片状聚氨酯增强碳纤维复合材料往往做成层合板的形式。本方案中固化剂可以是593
固化剂、120固化剂等改性胺类固化剂,或者二乙撑三胺、三乙撑四胺等脂肪胺类固化剂,或者2-甲基咪唑等咪唑类固化剂,本方案可采用以上常见固化剂中的任意一种,这里不做展开说明。
7.优选的,所述微纳米聚氨酯呈片状,所述微纳米片状聚氨酯平均粒径为6~8
ꢀµ
m。
8.优选的,所述环氧树脂预浸料包括质量分数为60-70%的环氧树脂,25-30%的固化剂,以及1-10%的微纳米片状聚氨酯。
9.优选的,所述环氧树脂在25℃下黏度为11000-14000 mpas。
10.优选的,步骤2所述的的加热温度为80-100℃,加热时间为3.5-4小时。
11.优选的,步骤4所述的烘干温度为120℃,烘干时间为2.5小时后降至室温,其中,升温速率为3℃/min,降温速率为2℃/min,以缓慢降温目的是降低结构内部残余应力。
12.第二方面,本技术还提供一种由上述方法所制备的微纳米片状聚氨酯增强碳纤维复合材料。
13.本技术的有益效果如下:本方案采用的微纳米片状聚氨酯在三个维度中,有一个维度往往比其余的两个维度要小的多,即厚度远小于长度与宽度,这就使得片状聚氨酯具有较大的表面积,片状聚氨酯可以作为分散相以相对独立的形态均匀分布于整个环氧树脂中,以减小树脂基料在固化过程中的内应力,使分子间的交联缠结减弱,降低交联密度,从而获得良好的力学性能和阻尼性能。当片状聚氨酯填料质量分数在环氧树脂预浸料中占1 wt%,弯曲强度为937.692 mpa,相比于碳纤维树脂基复合材料提高了14.4%,弯曲模量为62.656 gpa,相比于碳纤维树脂基复合材料提高了14.7 %;剪切强度为51.6 mpa,相比于碳纤维树脂基复合材料提高了11.21%,阻尼比为2.622%,相比于碳纤维树脂基复合材料提高了6.24%。当片状聚氨酯填料含量在环氧树脂预浸料中占3wt%,剪切强度为52 mpa,相比于碳纤维树脂基复合材料提高了12.07%,弯曲强度为870.402 mpa,相比于碳纤维树脂基复合材料提高了6.19%;弯曲模量为58.85 gpa,相比于碳纤维树脂基复合材料提高了7.77 %,阻尼比为2.702%,相比于碳纤维树脂基复合材料提高了9.48%。可见,本微纳米片状聚氨酯增强碳纤维复合材料相比未改良的复合材料在力学性能上得到了一定的提高,同时,阻尼性能也得到了较好的改观。
附图说明
14.为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见的,对于本领域技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
15.图1为本发明提供的微纳米片状聚氨酯的扫描电镜图;图2 为本发明实施例1提供的一种微纳米片状聚氨酯增强碳纤维复合材料的制备方法的方法流程图;图3 为本发明实施例1-4提供微纳米片状聚氨酯增强碳纤维复合材料以及对比例提供的碳纤维复合材料的弯曲强度图;图4 为本发明实施例1-4提供微纳米片状聚氨酯增强碳纤维复合材料以及对比例提供的碳纤维复合材料的弯曲模量图;图5 为本发明实施例1-4提供微纳米片状聚氨酯增强碳纤维复合材料以及对比例
提供的碳纤维复合材料的层间剪切强度图;图6 为本发明实施例1-4提供的微纳米片状聚氨酯增强碳纤维复合材料以及对比例提供的碳纤维复合材料的阻尼比图。
具体实施方式
16.为了使本技术领域的人员更好地理解本发明中的技术方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护范围。
17.请参考图1,所示为本实施例提供的微纳米片状聚氨酯的扫描电镜图。由图1可见,本技术中所述微纳米聚氨酯为片状结构,平均粒径为6~8
ꢀµ
m,聚氨酯为致密的薄膜,能够提供较好的机械强度,当受到外界振荡时,片状聚氨酯与环氧树脂之间,以及片状聚氨酯与片状聚氨酯间的摩擦导致能量消耗,降低低频振动,片状聚氨酯与树脂间的相对滑移能够引起损耗增加,并增强阻尼性能。片状聚氨酯具有比表面积大、模量高等特点,作为相对独立的分散相与环氧树脂共混后会发生键合,减少了碳纤维与环氧树脂界面间的局部应力集中,能够改善纤维与树脂基体的界面结合性能。
18.所述微纳米片状聚氨酯的制备方法包括如下步骤:将8g间甲苯异氰酸酯、2g二甲基硅油(pmx200 )与15g乙酸乙酯充分混合,加入质量分数为0.85 wt%的200ml阿拉伯胶水混合,剧烈搅拌5-10分钟,制得稳定的乳液体系;将2g聚乙二醇加入上述乳液体系中,搅拌5分钟,加入2g三乙烯四胺(teta)反应40分钟后,加热至50℃,保温120分钟,得到微纳米体系;将1g三乙烯四胺加入上述微纳米体系,反应50分钟后洗涤,在50℃下干燥24小时,得到微纳米片状聚氨酯。
19.实施例1请参考图2,所示为本实施例提供的一种微纳米片状聚氨酯增强碳纤维复合材料的制备方法的方法流程图。由图2可见,本方法包括如下步骤:步骤s101:将制备好的1g微纳米片状聚氨酯加入到乙醇溶液中,超声振荡、加热,得到聚氨酯的乙醇悬浮液;步骤s102:将干燥的环氧树脂60g加入所述聚氨酯的乙醇悬浮液中搅拌,充分混合后加热至80℃干燥3.5小时,加入25g593固化剂并充分混合后,双面刷涂到碳纤维布上;步骤s103:将所述碳纤维布上依次铺置有孔隔离膜、透气毡、真空膜,密封后抽真空,制得环氧树脂预浸料;步骤s104:将所述环氧树脂预浸料堆叠10层,双面挤压并烘干,得到微纳米片状聚氨酯增强碳纤维复合材料。本实施例中,所述环氧树脂在25℃下黏度为11000-14000 mpas。同时,本实施例还提供一种由以上方法制得的微纳米片状聚氨酯增强碳纤维复合材料。本技术其他实施例不再对产品实施例进行赘述。
20.实施例2步骤s201:将制备好的3g微纳米片状聚氨酯加入到乙醇溶液中,超声振荡、加热,得到聚氨酯的乙醇悬浮液;
步骤s202:将干燥的环氧树脂60g加入所述聚氨酯的乙醇悬浮液中搅拌,充分混合后加热至80℃干燥3.5小时,加入25g593固化剂并充分混合后,双面刷涂到碳纤维布上;步骤s203:将所述碳纤维布上依次铺置有孔隔离膜、透气毡、真空膜,密封后抽真空,制得环氧树脂预浸料;步骤s204:将所述环氧树脂预浸料堆叠10层,双面挤压并烘干,得到微纳米片状聚氨酯增强碳纤维复合材料。
21.实施例3步骤s301:将制备好的5g微纳米片状聚氨酯加入到乙醇溶液中,超声振荡、加热,得到聚氨酯的乙醇悬浮液;步骤s302:将干燥的环氧树脂60g加入所述聚氨酯的乙醇悬浮液中搅拌,充分混合后加热至80℃干燥3.5小时,加入25g593固化剂并充分混合后,双面刷涂到碳纤维布上;步骤s303:将所述碳纤维布上依次铺置有孔隔离膜、透气毡、真空膜,密封后抽真空,制得环氧树脂预浸料;步骤s304:将所述环氧树脂预浸料堆叠10层,双面挤压并烘干,得到微纳米片状聚氨酯增强碳纤维复合材料。
22.实施例4步骤s401:将制备好的10g微纳米片状聚氨酯加入到乙醇溶液中,超声振荡、加热,得到聚氨酯的乙醇悬浮液;步骤s402:将干燥的环氧树脂60g加入所述聚氨酯的乙醇悬浮液中搅拌,充分混合后加热至80℃干燥3.5小时,加入25g593固化剂并充分混合后,双面刷涂到碳纤维布上;步骤s403:将所述碳纤维布上依次铺置有孔隔离膜、透气毡、真空膜,密封后抽真空,制得环氧树脂预浸料;步骤s404:将所述环氧树脂预浸料堆叠10层,双面挤压并烘干,得到微纳米片状聚氨酯增强碳纤维复合材料。
23.对比例:步骤s10:将干燥的环氧树脂60g加热至80℃以降低黏度,加入25g593固化剂并充分混合后,双面刷涂到碳纤维布上;步骤s20:将所述碳纤维布上依次铺置有孔隔离膜、透气毡、真空膜,密封后抽真空,制得环氧树脂预浸料;步骤s30:将所述环氧树脂预浸料堆叠10层,双面挤压并烘干,得到碳纤维树脂基复合材料。
24.请参考图3-图6,当片状聚氨酯填料质量分数在环氧树脂预浸料中占1 wt%,弯曲强度为937.692 mpa,相比于碳纤维树脂基复合材料提高了14.4%,弯曲模量为62.656 gpa,相比于碳纤维树脂基复合材料提高了14.7 %;剪切强度为51.6 mpa,相比于碳纤维树脂基复合材料提高了11.21%,阻尼比为2.622%,相比于碳纤维树脂基复合材料提高了6.24%。当片状聚氨酯填料含量在环氧树脂预浸料中占3wt%,剪切强度为52 mpa,相比于碳纤维树脂基复合材料提高了12.07%,弯曲强度为870.402 mpa,相比于碳纤维树脂基复合材料提高了6.19%;弯曲模量为58.85 gpa,相比于碳纤维树脂基复合材料提高了7.77 %,阻尼比为2.702%,相比于碳纤维树脂基复合材料提高了9.48%。可见,本微纳米片状聚氨酯增强碳纤
维复合材料相比未改良的复合材料在力学性能上得到了一定的提高。同时,当片状聚氨酯质量分数在环氧树脂预浸料中占10 wt%,其阻尼比为3.29%,相比于碳纤维树脂基复合材料提升了33.01%,可见,本微纳米片状聚氨酯增强碳纤维复合材料的阻尼性能也同时得到了较好的改观。
25.实施例5步骤s501:将制备好的8g微纳米片状聚氨酯加入到乙醇溶液中,超声振荡、加热,得到聚氨酯的乙醇悬浮液;步骤s502:将干燥的环氧树脂70g加入所述聚氨酯的乙醇悬浮液中搅拌,充分混合后加热至100℃干燥4小时,加入30g二乙撑三胺固化剂并充分混合后,双面刷涂到碳纤维布上;步骤s503:将所述碳纤维布上依次铺置有孔隔离膜、透气毡、真空膜,密封后抽真空,制得环氧树脂预浸料;步骤s504:将所述环氧树脂预浸料堆叠5层,双面挤压并烘干,得到微纳米片状聚氨酯增强碳纤维复合材料,烘干温度为120℃,烘干时间为2.5小时后降至室温,其中,升温速率为3℃/min,降温速率为2℃/min。
26.实施例6步骤s601:将制备好的3g微纳米片状聚氨酯加入到乙醇溶液中,超声振荡、加热,得到聚氨酯的乙醇悬浮液;步骤s602:将干燥的环氧树脂68g加入所述聚氨酯的乙醇悬浮液中搅拌,充分混合后加热至90℃干燥4小时,加入28g二乙撑三胺固化剂并充分混合后,双面刷涂到碳纤维布上;步骤s603:将所述碳纤维布上依次铺置有孔隔离膜、透气毡、真空膜,密封后抽真空,制得环氧树脂预浸料;步骤s604:将所述环氧树脂预浸料堆叠5层,双面挤压并烘干,得到微纳米片状聚氨酯增强碳纤维复合材料,烘干温度为120℃,烘干时间为2.5小时后降至室温,其中,升温速率为3℃/min,降温速率为2℃/min。
技术特征:
1.一种微纳米片状聚氨酯增强碳纤维复合材料的制备方法,其特征在于,包括如下步骤:步骤1:将制备好的微纳米片状聚氨酯加入到乙醇溶液中,超声振荡、加热,得到聚氨酯的乙醇悬浮液;步骤2:将干燥的环氧树脂加入所述聚氨酯的乙醇悬浮液中搅拌,充分混合后加热干燥,加入固化剂并充分混合后,双面刷涂到碳纤维布上;步骤3:将所述碳纤维布上依次铺置有孔隔离膜、透气毡、真空膜,密封后抽真空,制得环氧树脂预浸料;步骤4:将所述环氧树脂预浸料堆叠5-10层,双面挤压并烘干,得到微纳米片状聚氨酯增强碳纤维复合材料,其中,所述微纳米片状聚氨酯的制备方法包括:将间甲苯异氰酸酯、二甲基硅油与乙酸乙酯充分混合,加入质量分数为0.85 wt%的阿拉伯胶水混合,剧烈搅拌5-10分钟,制得稳定的乳液体系;将聚乙二醇加入上述乳液体系中,搅拌5分钟,加入三乙烯四胺反应40分钟后,加热至50℃,保温120分钟,得到微纳米体系;将三乙烯四胺加入上述微纳米体系,反应50分钟后洗涤,在50℃下干燥24小时,得到微纳米片状聚氨酯。2.根据权利要求1所述的方法,其特征在于,所述微纳米片状聚氨酯呈片状,所述微纳米片状聚氨酯平均粒径为6~8
ꢀµ
m。3.根据权利要求1所述的方法,其特征在于,所述环氧树脂预浸料包括质量分数为60-70%的环氧树脂,25-30%的固化剂,以及1-10%的微纳米片状聚氨酯。4.根据权利要求1所述的方法,其特征在于,所述环氧树脂在25℃下黏度为11000-14000 mpas。5.根据权利要求1所述的方法,其特征在于,步骤2所述的的加热温度为80-100℃,加热时间为3.5-4小时。6.根据权利要求1所述的方法,其特征在于,步骤4所述的烘干温度为120℃,烘干时间为2.5小时后降至室温,其中,升温速率为3℃/min,降温速率为2℃/min。7.一种由上述权利要求1-7中任意一项方法所制备的微纳米片状聚氨酯增强碳纤维复合材料。
技术总结
本申请涉及复合材料领域,提供一种微纳米片状聚氨酯增强碳纤维复合材料及其制备方法。本方案采用的微纳米片状聚氨酯在三个维度中,有一个维度往往比其余的两个维度要小的多,即厚度远小于长度与宽度,这就使得片状聚氨酯具有较大的表面积,片状聚氨酯可以作为分散相以相对独立的形态均匀分布于整个环氧树脂中,以减小树脂基料在固化过程中的内应力,使分子间的交联缠结减弱,降低交联密度,从而获得良好的力学性能和阻尼性能。本材料相比未改良的复合材料在力学性能上得到了一定的提高,同时,阻尼性能也得到了较好的改观。阻尼性能也得到了较好的改观。阻尼性能也得到了较好的改观。