一种基于SLA的3D打印机的制作方法
一种基于sla的3d打印机
技术领域
1.本发明属于打印机技术领域,具体涉及一种基于sla的3d打印机。
背景技术:
2.sla是即立体光固化成型法,用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面,这样层层叠加构成一个三维实体;
3.sla是最早实用化的快速成形技术,采用液态光敏树脂原料,其工艺过程是,首先通过cad设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面;然后升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型,将原型从树脂中取出后,进行固化,再经打磨,然后电镀、喷漆或上得到要求的产品;
4.sla技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用sla原型模代替熔模精密铸造中的蜡模,sla技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变,因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。
5.现有基于sla的3d打印机中横置的反射镜设置在成型台的上方,不可收回,从而会阻碍成型腔其他结构检修和安装,且在反射过程中,反射镜会吸收部分激光能量,使反射镜的温度上升,进而导致反射镜发生形变和损耗,而形变会导致反射镜的镜面不平整,进而使反射镜的反射精度下降,由此提出一种基于sla的3d打印机。
技术实现要素:
6.本发明提供了一种基于sla的3d打印机,其目的在于解决了横置的反射镜设置在成型台的上方,不可收回,从而会阻碍成型腔其他结构检修和安装,且在反射过程中,反射镜会吸收部分激光能量,使反射镜的温度上升,进而导致反射镜发生形变和损耗,而形变会导致反射镜的镜面不平整,进而使反射镜的反射精度下降的问题。
7.本发明提供了一种基于sla的3d打印机,包括壳体,所述壳体的内部开设有成型腔,所述成型腔内壁一侧的中部设置有第一反射机构,所述成型腔内壁另一侧的顶部设置有第二反射机构;
8.所述成型腔顶部的一侧设置有激光发生器,所述激光发生器与第一反射机构相对应,第一反射机构和第二反射机构连接着同一个冷却组件;
9.所述第一反射机构包括基板二和稳定座,所述稳定座的顶部设置有基板二,所述基板二的顶端安设有纵向反射镜,所述稳定座的内侧插接有转轴二,所述壳体的内侧固联
有伺服电机,所述伺服电机的动力输出端与转轴二的一端固定连接,所述转轴二的另一端与壳体的内侧活动连接;
10.所述成型腔内壁另一侧的顶部开设有回收槽,第二反射机构包括基板一和横向反射镜,所述基板一的底端设置有转轴一,所述转轴一的两端与回收槽的内侧转动连接,所述基板一的一侧设置有横向反射镜,所述基板一的外侧与回收槽的内侧可变动连接。
11.进一步地,所述稳定座为半圆柱状,所述成型腔内壁一侧的中部开设有滚动槽,所述滚动槽内底壁的形状为半圆柱周面,所述稳定座的底部与滚动槽的内底壁滑动连接。
12.通过采用上述方案,稳定座和滚动槽配合,使基板二和纵向反射镜的角度改变更加平稳。
13.进一步地,所述冷却组件包括循环压缩机、翅片管散热器、连接管一、连接管二、连接管三和连接管四,所述壳体的顶端设置有循环压缩机,所述壳体的一侧设置有翅片管散热器,散热器的内容有冷却液,所述循环压缩机的两端分别设置有连接管三和连接管四,所述翅片管散热器的顶端与连接管三的一端固定连接,所述翅片管散热器的底端设置有连接管一,所述连接管一的底端与基板一的一端固定连接,所述基板一的另一端设置有连接管二,所述连接管四的底端与基板二的一端固定连接,所述稳定座的另一端与连接管二远离基板一的一端固定连接。
14.通过采用上述方案,冷却组件使基板一上的横向反射镜和基板二上的纵向反射镜的温度保持稳定,减少因温度过高造成横向反射镜和基板二发生形变和损耗,保证反射镜镜面平整度,从而保证反射镜的反射精度。
15.进一步地,所述回收槽顶端的一侧开设有活动腔,所述活动腔内壁的一端铰接有伺服电缸,所述伺服电缸的活动端固定连接有连接架,所述连接架的一侧与基板一一端的一侧铰接。
16.通过采用上述方案,回收槽使基板一和横向反射镜得以回收到壳体的内侧,避免阻碍成型腔其他结构维护、检修和安装,伺服电缸通过连接架控制基板一摆动,使横向反射镜控制激光的反射角度发生改变。
17.进一步地,所述基板一的一侧开设有安装槽一,所述安装槽一的内侧插接有导热座一,所述导热座一的一侧开设有导热槽,所述导热槽的材料为铜,所述导热座一的一侧与横向反射镜的一侧固定连接,所述横向反射镜的四周均固定连接有方形固定框,所述方形固定框的一侧与安装槽一的内侧卡接,所述导热槽的形状为正四棱台,所述连接管一和连接管二均与导热槽的内腔相连通。
18.通过采用上述方案,冷却液到达基板一的内侧后会到达导热槽的内腔,横向反射镜的热量通过导热座一传导给冷却液。
19.进一步地,所述基板二的顶部开设有安装槽二,所述安装槽二的内侧插接有导热座二,所述导热座二的材料为铜,所述导热座二的底部交替设置有若干个冷却槽和配合槽,所述安装槽二的内底壁设置有若干个分割板,所述分割板与配合槽分别对应,每个所述分割板的顶端均设置有密封块,所述密封块的材料为橡胶,所述密封块与对应的配合槽可变动连接,所述安装槽二与连接管二和连接管四相连通,所述分割板的两端部交替设置有缺口,使得安装槽二的内腔分割为s形通道。
20.通过采用上述方案,冷却液通过安装槽二内侧的s形通道,冷却液与导热座二一侧
接触,冷却槽增大冷却液与导热座二的接触面积,纵向反射镜的热量传递给导热座二,导热座二将热量传导给冷却液。
21.进一步地,所述纵向反射镜底部的两端分别设置有一个固定柱,所述固定柱与基板二的顶部插接。
22.通过采用上述方案,固定柱方便纵向反射镜稳定的固定在基板二一侧。
23.与现有技术相比,本发明的上述技术方案具有如下有益的技术效果:
24.1、本发明中,通过回收槽和基板一的配合使用,使基板一和横向反射镜得以回收到壳体的内侧,避免阻碍成型腔其他结构维护、检修和安装,伺服电缸通过连接架控制基板一摆动,使横向反射镜控制激光的反射角度发生改变;
25.2、本发明中,通过冷却组件的使用,使基板一上的横向反射镜和基板二上的纵向反射镜的温度保持稳定,减少因温度过高造成横向反射镜和基板二发生形变和损耗,保证反射镜镜面平整度,从而保证反射镜的反射精度。
26.本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书以及附图中所特别指出的结构来实现和获得。
附图说明
27.附图用来提供对本发明进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
28.图1为本发明的正面结构示意图;
29.图2为本发明基板一的正面结构示意图;
30.图3为本发明基板二与伺服电机的连接关系结构示意图;
31.图4为本发明基板二正面的截面结构示意图;
32.图5为本发明图1中a部分的局部放大结构示意图;
33.图6为本发明图1中b部分的局部放大结构示意图;
34.图7为本发明冷却组件结构示意图。
35.附图标记:1、壳体;2、激光发生器;3、成型腔;4、循环压缩机;5、活动腔;6、伺服电缸;7、翅片管散热器;8、基板一;9、转轴一;10、横向反射镜;11、方形固定框;12、连接架;13、转轴二;14、基板二;15、安装槽二;16、纵向反射镜;17、导热座二;18、冷却槽;19、配合槽;20、固定柱;21、伺服电机;22、分割板;23、密封块;24、;25、安装槽一;26、导热座一;27、导热槽;28、滚动槽;29、连接管一;30、连接管二;31、连接管三;32、连接管四;33、回收槽;34、稳定座。
具体实施方式
36.为了使得本发明的技术方案的目的、技术方案和优点更加清楚,下文中将结合本发明具体实施例的附图,对本发明实施例的技术方案进行清楚、完整的描述。附图中相同的附图标记代表相同的部件。需要说明的是,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
37.如图1-7所示,本发明提出一种基于sla的3d打印机,包括壳体1,所述壳体1的内部开设有成型腔3,所述成型腔3内壁一侧的中部设置有第一反射机构,所述成型腔3内壁另一侧的顶部设置有第二反射机构;
38.所述成型腔3顶部的一侧设置有激光发生器2,所述激光发生器2与第一反射机构相对应,第一反射机构和第二反射机构连接着同一个冷却组件;
39.所述第一反射机构包括基板二14和稳定座34,所述稳定座34的顶部设置有基板二14,所述基板二14的顶端安设有纵向反射镜16,所述稳定座34的内侧插接有转轴二13,所述壳体1的内侧固联有伺服电机21,所述伺服电机21的动力输出端与转轴二13的一端固定连接,所述转轴二13的另一端与壳体1的内侧活动连接;
40.所述成型腔3内壁另一侧的顶部开设有回收槽33,第二反射机构包括基板一8和横向反射镜10,所述基板一8的底端设置有转轴一9,所述转轴一9的两端与回收槽33的内侧转动连接,所述基板一8的一侧设置有横向反射镜10,所述基板一8的外侧与回收槽33的内侧可变动连接。
41.所述稳定座34为半圆柱状,所述成型腔3内壁一侧的中部开设有滚动槽28,所述滚动槽28内底壁的形状为半圆柱周面,所述稳定座34的底部与滚动槽28的内底壁滑动连接;
42.稳定座34和滚动槽28配合,使基板二14和纵向反射镜16的角度改变更加平稳。
43.所述冷却组件包括循环压缩机4、翅片管散热器7、连接管一29、连接管二30、连接管三31和连接管四32,所述壳体1的顶端设置有循环压缩机4,所述壳体1的一侧设置有翅片管散热器7,散热器7的内容有冷却液,所述冷却液的包括酒精、甘油和乙二醇,所述循环压缩机4的两端分别设置有连接管三31和连接管四32,所述翅片管散热器7的顶端与连接管三31的一端固定连接,所述翅片管散热器7的底端设置有连接管一29,所述连接管一29的底端与基板一8的一端固定连接,所述基板一8的另一端设置有连接管二30,所述连接管四32的底端与基板二14的一端固定连接,所述稳定座34的另一端与连接管二30远离基板一8的一端固定连接;
44.冷却组件使基板一8上的横向反射镜10和基板二14上的纵向反射镜16的温度保持稳定,减少因温度过高造成横向反射镜10和基板二14发生形变和损耗,保证反射镜镜面平整度,从而保证反射镜的反射精度。
45.所述回收槽33顶端的一侧开设有活动腔5,所述活动腔5内壁的一端铰接有伺服电缸6,所述伺服电缸6的活动端固定连接有连接架12,所述连接架12的一侧与基板一8一端的一侧铰接;
46.回收槽33使基板一8和横向反射镜10得以回收到壳体1的内侧,避免阻碍成型腔其他结构维护、检修和安装,伺服电缸6通过连接架12控制基板一8摆动,使横向反射镜10控制激光的反射角度发生改变。
47.所述基板一8的一侧开设有安装槽一25,所述安装槽一25的内侧插接有导热座一26,所述导热座一26的一侧开设有导热槽27,所述导热槽27的材料为铜,所述导热座一26的一侧与横向反射镜10的一侧固定连接,所述横向反射镜10的四周均固定连接有方形固定框11,所述方形固定框11的一侧与安装槽一25的内侧卡接,所述导热槽27的形状为正四棱台,所述连接管一29和连接管二30均与导热槽27的内腔相连通;
48.冷却液到达基板一8的内侧后会到达导热槽27的内腔,横向反射镜10的热量通过
导热座一26传导给冷却液。
49.所述基板二14的顶部开设有安装槽二15,所述安装槽二15的内侧插接有导热座二17,所述导热座二17的材料为铜,所述导热座二17的底部交替设置有若干个冷却槽18和配合槽19,所述安装槽二15的内底壁设置有若干个分割板22,所述分割板22与配合槽19分别对应,每个所述分割板22的顶端均设置有密封块23,所述密封块23的材料为橡胶,所述密封块23与对应的配合槽19可变动连接,所述安装槽二15与连接管二30和连接管四32相连通,所述分割板22的两端部交替设置有缺口,使得安装槽二15的内腔分割为s形通道;
50.冷却液通过安装槽二15内侧的s形通道,冷却液与导热座二17一侧接触,冷却槽18增大冷却液与导热座二17的接触面积,纵向反射镜16的热量传递给导热座二17,导热座二17将热量传导给冷却液,使纵向反射镜16得到冷却,进而使纵向反射镜16温度保持稳定。
51.所述纵向反射镜16底部的两端分别设置有一个固定柱20,所述固定柱20与基板二14的顶部插接;
52.固定柱20方便纵向反射镜16稳定的固定在基板二14的一侧。
53.实施方式具体为:激光发生器2发射的激光打在纵向反射镜16的顶部,经纵向反射镜16反射使激光发生器2发射的激光到达横向反射镜10的外侧,横向反射镜10使激光打到成型腔3的底部;
54.伺服电机21通过转轴二13控制调整基板二14的转动,调整基板二14的角度,从而调整纵向反射镜16的角度,从而调整激光打在横向反射镜10一侧竖直方向上的位置,从而改变激光射在成型腔3底部的纵向位置,伺服电缸6通过连接架12带动基板一8绕着转轴一9的中心摆动,从而改变横向反射镜10与回收槽33内壁的夹角,改变激光射在成型腔3底部的横向位置;
55.循环压缩机4运转,使冷却液通过连接管四32到达稳定座34的内侧,稳定座34内冷却液使纵向反射镜16得到冷却,使纵向反射镜16的温度保持稳定,从而减少纵向反射镜16发生的形变,基板二14内的冷却液经过连接管二30到达基板一8的内侧使横向反射镜10得到冷却,使横向反射镜10的温度保持稳定,减少横向反射镜10发生形变;
56.基板一8内侧的冷却液经过连接管一29到达翅片管散热器7的内侧,冷却液通过翅片管散热器7散失热量,通过翅片管散热器7使冷却液得到冷却,翅片管散热器7通过连接管三31使其内部的冷却液返回到翅片管散热器7;
57.冷却液通过安装槽二15内侧的s形通道,冷却液与导热座二17一侧接触,冷却槽18增大冷却液与导热座二17的接触面积,纵向反射镜16的热量传递给导热座二17,导热座二17将热量传导给冷却液;
58.冷却液减少因温度过高造成横向反射镜10和纵向反射镜16发生形变和损耗,保证反射镜镜面平整度,从而保证反射镜的反射精度。
59.以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
技术特征:
1.一种基于sla的3d打印机,包括壳体(1),其特征在于,所述壳体(1)的内部开设有成型腔(3),所述成型腔(3)内壁一侧的中部设置有第一反射机构,所述成型腔(3)内壁另一侧的顶部设置有第二反射机构;所述成型腔(3)顶部的一侧设置有激光发生器(2),所述激光发生器(2)与第一反射机构相对应,第一反射机构和第二反射机构连接着同一个冷却组件;所述第一反射机构包括基板二(14)和稳定座(34),所述稳定座(34)的顶部设置有基板二(14),所述基板二(14)的顶端安设有纵向反射镜(16),所述稳定座(34)的内侧插接有转轴二(13),所述壳体(1)的内侧固联有伺服电机(21),所述伺服电机(21)的动力输出端与转轴二(13)的一端固定连接;所述成型腔(3)内壁另一侧的顶部开设有回收槽(33),第二反射机构包括基板一(8)和横向反射镜(10),所述基板一(8)的底端设置有转轴一(9),所述转轴一(9)的两端与回收槽(33)的内侧转动连接,所述基板一(8)的一侧设置有横向反射镜(10),所述基板一(8)的外侧与回收槽(33)的内侧可变动连接。2.根据权利要求1所述的一种基于sla的3d打印机,其特征在于:所述稳定座(34)为半圆柱状,所述成型腔(3)内壁一侧的中部开设有滚动槽(28),所述滚动槽(28)内底壁的形状为半圆柱周面,所述稳定座(34)的底部与滚动槽(28)的内底壁滑动连接。3.根据权利要求1所述的一种基于sla的3d打印机,其特征在于:所述冷却组件包括循环压缩机(4)、翅片管散热器(7)、连接管一(29)、连接管二(30)、连接管三(31)和连接管四(32),所述壳体(1)的顶端设置有循环压缩机(4),所述壳体(1)的一侧设置有翅片管散热器(7),所述循环压缩机(4)的两端分别设置有连接管三(31)和连接管四(32),所述翅片管散热器(7)的顶端与连接管三(31)的一端固定连接,所述翅片管散热器(7)的底端设置有连接管一(29),所述连接管一(29)的底端与基板一(8)的一端固定连接,所述基板一(8)的另一端设置有连接管二(30),所述连接管四(32)的底端与基板二(14)的一端固定连接,所述稳定座(34)的另一端与连接管二(30)远离基板一(8)的一端固定连接。4.根据权利要求3所述的一种基于sla的3d打印机,其特征在于:所述回收槽(33)顶端的一侧开设有活动腔(5),所述活动腔(5)内壁的一端铰接有伺服电缸(6),所述伺服电缸(6)的活动端固定连接有连接架(12),所述连接架(12)的一侧与基板一(8)一端的一侧铰接。5.根据权利要求4所述的一种基于sla的3d打印机,其特征在于:所述基板一(8)的一侧开设有安装槽一(25),所述安装槽一(25)的内侧插接有导热座一(26),所述导热座一(26)的一侧开设有导热槽(27),所述导热槽(27)的材料为铜,所述导热座一(26)的一侧与横向反射镜(10)的一侧固定连接,所述横向反射镜(10)的四周均固定连接有方形固定框(11),所述方形固定框(11)的一侧与安装槽一(25)的内侧卡接,所述导热槽(27)的形状为正四棱台,所述连接管一(29)和连接管二(30)均与导热槽(27)的内腔相连通。6.根据权利要求5所述的一种基于sla的3d打印机,其特征在于:所述基板二(14)的顶部开设有安装槽二(15),所述安装槽二(15)的内侧插接有导热座二(17),所述导热座二(17)的材料为铜,所述导热座二(17)的底部交替设置有若干个冷却槽(18)和配合槽(19),所述安装槽二(15)的内底壁设置有若干个分割板(22),所述分割板(22)与配合槽(19)分别对应,每个所述分割板(22)的顶端均设置有密封块(23),所述密封块(23)的材料为橡胶,所
述密封块(23)与对应的配合槽(19)变动连接,所述安装槽二(15)与连接管二(30)和连接管四(32)相连通,所述分割板(22)的两端部交替设置有缺口,使得安装槽二(15)的内腔分割为s形通道。7.根据权利要求6所述的一种基于sla的3d打印机,其特征在于:所述纵向反射镜(16)底部的两端分别设置有一个固定柱(20),所述固定柱(20)与基板二(14)的顶部插接。
技术总结
本发明为一种基于SLA的3D打印机,属于打印机技术领域,包括壳体,所述壳体的内部开设有成型腔,所述成型腔内壁一侧的中部设置有第一反射机构。横置的反射镜设置在成型台的上方,不可收回,从而会阻碍成型腔其他结构检修和安装,且在反射过程中,反射镜会吸收部分激光能量,使反射镜的温度上升,进而导致反射镜发生形变和损耗,而形变会导致反射镜的镜面不平整,进而使反射镜的反射精度下降的问题,本发明中,通过回收槽和基板一的配合使用,使基板一和横向反射镜得以回收到壳体的内侧,避免阻碍成型腔其他结构维护、检修和安装,伺服电缸通过连接架控制基板一摆动,使横向反射镜控制激光的反射角度发生改变。制激光的反射角度发生改变。制激光的反射角度发生改变。