6thWorldCongressofStructuralandMultidisciplinaryOptimization
RiodeJaneiro,30May-03June2005,Brazil
Topologicaldesignofcontinuumstructuressubjectedtoforcedvibration
NielsOlhoff,JianbinDu
InstituteofMechanicalEngineering,AalborgUniversity,Aalborg,Denmark,no@,jd@
ct
Thispaperdealswiththeproblemoftopologicaldesignoptimizationofelastic,continuumstructureswithoutdampingthatare
subjectedtotime-harmonic,design-independent(or–dependent)
importantobjectiveofsuchadesignproblemisoftentodrivetheeigenfrequenciesofthestructureasfarawayaspossiblefromthe
prescribedloadingfrequencyjectiveisimplemented
inthispaperbyminimizingthedynamiccomplianceofthestructuresubjecttothegivenfrequencyoftheloading,usingthevolumetric
densitiesofmaterialinthefiniteelementsintheadmissibledesigndomainasdesignvariables,andapplyingtheSIMPmodelto
alstructuralvolume,theboundaryconditions,andthematerialaregiven.
Onlyloadingfrequenciesthataresmallerthantheoptimumvalueofthecondeigenfrequencyofthecorrespondingproblemforfree
vibrations,arediscusdinthispaper.
ds:Topologyoptimization,dynamiccompliance,vibrationlevel,loadingfrequency
uction
Themethodoftopologyoptimizationfirstappearedintheliteraturein1988,andwasoriginallydevelopedfordeterminingthe
distributionofanelasticmaterialwithinanadmissibledesigndomainthatsubjecttoagivenstaticloadingyieldsthestiffestpossible
structureforaprescribedamountofmaterial,eBendsøeandKikuchi[1]andBendsøe[2].Incomparisonwithusualsizingandshape
optimization,topologyoptimizationimpliesmoredesignfreedomsinceitallowsnewholesandconnectionstobegeneratedinthe
structureandhergyoptimizationisthereforean
importantpreprocessingtoolforsizingandshapeoptimization(eOlhoffetal.[3]).Duringthelastdecade,themethodhasbeen
gyoptimizationhasthereforebecomeastandardtoolforsynthesis
ofpartsorwholestructuresintheautomotiveandaerospaceindustries,anditisrapidlyspreadingintootherengineeringdesigndisciplines.
ThereaderisreferredtotheexhaustivetextbookbyBendsøeandSigmund[4]andthereviewarticlebyEschenauerandOlhoff[5]forrecent
developmentsandpublications.
Liketheconceptofcomplianceinstaticstructuraldesign,dynamiccomplianceisaproperglobalmeasureofthedynamic
msoftopologyoptimizationwiththeobjectiveofminimizingthedynamiccompliance(maximizingthe
dynamicstiffness)ofstructuressubjectedtotime-harmonicexternalloadingofgivenfrequencyandamplitudewere,e.g.,studiedby
Maetal.[6]andJog[7].TopologydesignsubjecttotransientexternalloadingwasstudiedbyMinetal.[8],wherethedynamic
complianceisdefinedrelativetoaspecifiedtimeinterval.
Aproblemthatmayariinstructuraltopologyoptimizationundertime-harmonicdynamicloadingisthatthestaticcompliance
(correspondingtothesameloadingamplitude,butzerofrequency)mayincreatoaveryhighlevel(iak[9])duringthe
emecasthestaticcomplianceactuallytendstoinfinity,
whichreflectsthatadr,wehavefoundthatthedesign
objectiveofthedynamicproblemcanbeimplementedalongdifferentoptimizationpaths,andthatitispossibletoavoidtheproblem
,intheprentpaper,anapproachispropodinwhichthestaticcomplianceof
thestructureisconstrarithmdevelopedforthis
handlestheoptimumdesignproblembyacontinuationtechniquewheretheloadingfrequencyisquentiallyincreadfroma
calexamplesareprentedtodemonstratethevalidityoftheapproach.
Asanextensionrelativetotraditionaltopologyoptimization,ourstudyalsoincludescaswherethedynamicloadingis
design-dependent,i.e.,caswhereboththelocatio
methodsdevelopedbyHammerandOlhoff([10],[11];ealsoDuandOlhoff[12],[13])areemployedtohandlethedesignproblems
ndofthepapersomeillustrativeoptimumtopologyresultsareprented,bothforcas
ofdesign-independentanddesign-dependentloading.
ationoftopologydesignproblemforminimizationofdynamiccompliance
Theproblemofoptimizingthetopologyofacontinuumstructure(withoutdamping)forminimumvalueoftheintegraldynamic
structuralcompliancecanbeformulatedinadiscreteformasfollows:
2
.),,1(,10
,)(,0
,)(
:
|}|{min
0
**
1
2
ee
N
e
ee
p
d
e
Ne
VVVV
toSubject
C
E
L=≤≤<
=≤−
=−
=
∑
=
ρρ
αρ
ω
ρ
PUMK
UPT
(1)
Thedynamiccomplianceiqualtotheworkdonebytheexternaldynamicforcesagainstcorrespondingdisplacements,andis
proportionaltotheexpressiongivenforC
d
in(1),whereUdenotesthedisplacementamplitudevectorofthesteady-state,time-
harmonicvibration,monicexternalloadingvectorp(t)withthe
givenexcitationfrequency
p
ωcanthenbeexpresdasti
petωPp=)(andthedisplacementresponvectorasti
petωUa=)(.The
symbolsKandMreprenttheNdimensionalstructuralstiffnessandmassmatrices,bolρ
e
is
thevolumebolαdenotesthevolumefractionof
availablematerialandisgivenby
0
*/VV,whereV
0
isthevolumeoftheadmissibledesigndomainandV*istheprescribedtotal
bolN
E
reprentsthetotalnumberoffiniteelements.
Itisnotedthatthedynamicstiffness
d
KdefinedasMKK2
pd
ω−=maybenegativedefinitewhentheloadingfrequency
p
ω
hasahighvalue,ca,theproductoftheamplitudesofthe
externalloadingvectorandthedisplacementvectorofthestructuralresponmayattainanegativevalue,andinordertoincludethis
possibilityinourproblemformulation,weutheabsolutevalueoftheaboveproductasthedynamiccompliancedefinedinour
problem,eEq.(1).Thefirstequationlistedintheconstraintsofproblem(1)isthedynamicstateequationandcanbesolvedina
directwaybyGausliminationorbyusingatechniqueofmodalsuperposition.
PMaterialmodel
TheSIMP(SolidIsotropicMicrostructurewithPenalty)interpolationmodel(e,e.g.,Bendsøe[2];Rozvany,etal.[14];Bendsøeand
Sigmund[15])isudheretogetherwithafilteringtechnique(e,e.g.,Sigmund[16]),inordertoavoidcheckerboardformationand
dep,thefiniteelementelasticitymatrixE
e
is
expresdintermsoftheelementvolumetricmaterialdensityρ
e,
0≤ρ
e
≤1,andthepenalizationpowerp,p≥1,as
*)(
e
p
eee
EEρρ=,(2)
where*
e
Eistheelasticitymatrixofacorresponding
analogywith(2),foravibratingstructurethefiniteelementmassmatrixmaybeexpresdas
*)(
e
q
eee
MMρρ=,(3)
where*
e
Mreprentstheelementmassmatrixcorrespondingtofullysolidmaterial,andthepowerq≥romexceptionsbriefly
discusdinthefollowingction,normallyq=balstiffnessmatrixKandmassmatrixMforthefiniteelement
badstructuralresponanalysbehindtheoptimizationcannowbecalculatedby
∑∑
==
==EE
N
e
e
q
e
N
e
e
p
e
1
*
1
*,MMKKρρ,(4)
where*
e
Kisthestiffnessmatrixofafiniteelementfullysolidmaterial,andN
E
denotesthetotalnumberoffiniteelementsinthe
admissibledesigndomain.
zedvibrationmodes
Withvaluesassignedtopandqasstatedabove,applicationoftheSIMPmodelforproblemsoftopologyoptimizationwithrespectto
dynamicstructuralresponforprescribed,lowexcitationfrequenciesmayleadtotheoccurrenceofspurious,localizedvibration
alizedmodesmayoccurinsub-regionsofthedesigndomainwithlowvaluesofthematerialdensity(e.g.0≤ρ
e
≤0.1),
wheretheratiobetweenthestiffness(with,say,p=3intheinterpolationformula)andthemass(withq=1)inate
thespuriousmodeswehavetthemassverylowviaahighvalueofthepenalizationpowerinsub-regionswithlowmaterialdensity
(Pedern[17];Tcherniak[9]).Thus,theinterpolationformula(3)forthefiniteelementmassmatrixwasmodifiedas
⎩
⎨
⎧
≤
>
=
)1.0(,
)1.0(,
)(
*
*
ee
r
e
eee
eeρρ
ρρ
ρ
M
M
M,(5)
wherethepenalizationpowerrischontobeaboutr=6,i.e.,muchlargerthanthepenalizationpowerpforthestiffness,whichiskept
unchangedatavalueaboutp=3.
ivityanalysis
ThensitivityoftheobjectivefunctionC
d
inproblem(1)withrespecttothedesignvariablesρ
e
isgivenby
,)()(||UPUPUPUPTTTT′
+
′
=
′
=
′
signC
d
(6)
whereprimedenotespartialderivativewithrespecttoρ
e
,andsign()sitivityP
′
oftheloadvectorwillbe
3
zeroifitisdesign-independent,otherwiitcanbehandledusingthemethoddescribedbyHammerandOlhoff([10],[11]),andalsoby
DuandOlhoff[12],[13].ThensitivityU
′ofthedisplacementvectorisgivenby
,)()(22UMKPfUMK
′
−
′
−
′
≡=
′
−
pp
ωω(7)
wherethensitivitiesofthestiffnessandmassmatricescanbedirectlyobtainedfromtheSIMPmaterialmodel,.(4).Thevectorfis
knownasthepudoloadandisdefinedbythetermontheright-handsideofEq.(7).InsteadofsolvingEq.(7),theadjointmethod(ee.g.
TortorelliandMichaleris[18])maybeudtocalculatethensitivityoftheobjectivefunctioninamoreefficientmanner,whichgivesthe
followingresult
.))(2)((2UMKUPUUPTTT′
−
′
−
′
=
′
pd
signCω(8)
Accordingly,theoptimalityconditionforproblem(1)canbeexpresdinthefollowingformbymeansofthemethodofLagrange
multipliers,
,0))(2)((2=Λ+
′
−
′
−
′
ep
VsignUMKUPUUPTTTω(9)
whereΛistheLagrangemultipliercorrespondingtothematerialvolumeconstraint,andthesideconstraintsforρ
e
optimizationproblem(1)canbesolvedbyusingthewell-knownMMAmethod(Svanberg[19])oranoptimalitycriterionmethod,
fixedpointmethod,asdevidinChengandOlhoff[20].
calexamples
5.1Topologydesignofa2Dinletsubjectedtohydrodynamicpressureloading
Thixampleilluidflowinthechanneloftheinitial
inletisasshowninFig.2(a),andisassumedtoexertauniformhydrodynamicpressureloadingofgivenfrequencyandamplitudeon
rodynamicpressureisadesign-dependentloadinganditistreatedasdescribedinthepaper(Duand
Olhoff[12]).ThematerialoftheinletisisotropicwithYoung’smodulusE=107,Poisson’sratioυ=0.3andthespecificmassγ
m
=1(SI
unitsareudthroughout).Theavailablematerialvolumefractionistas40%.Thedesignobjectiveistominimizethedynamic
.2(a).2(b-d)showoptimized
topologiesandtheassociatedloadingboundariesforthreegivenloadingfrequencies
0=
p
ω
(staticloading),
800=
p
ω
and
1000=
p
ω
.TheloadingfrequenciesarealllowerthantheoptimumobtainablevalueΩ
opt
=1328ofthefundamentaleigenfrequency
sthatwhentheloadingfrequencyisincreadfrom0to800,theshapeoftheinletisslightlychangedwhilethe
optimumtopologyoftheinletremainsthesame(Fig.2(b),(c)).Whentheloadingfrequencyisincreadupto1000,boththetopology
andtheshapeoftheinletarechanged(Fig.2(d)).
Asacomparison,Fig.3showstheoptimumtopologyoftheinlet(forthesamematerialvolumefractionasabove)whenit
performsfreevibrationsatthemaximumvalueΩ
opt
=damentaleigenfrequencyofthe
initialdesignoftheinlet(withuniformlydistributedmaterialovertheadmissibledesigndomain,eFig.2(a))is455.
zedtopologies(40%volumefraction)andloadingboundariesof2Dinletforthreedifferentloadingfrequencies.(a)
Admissibledesigndomain,loadingandsupportconditions.(b)ω
p
=0.(c)ω
p
=800.(d)ω
p
=1000.
4
mtopologyofthe2Dinlet(for40%volumefraction)obtainedbymaximizingthefundamentaleigenfrequencyoffree
imumfundamentaleigenfrequencyisΩ
opt
=1328.
,whentheloadingfrequencyis
muchlowerthantheoptimumfundamentaleigenfrequencyofthestructure,theresultingtopology(eFig.2(c))obtainedbythe
dynamicdesignoftheprentpaperissimilartothestaticdesignthatsustainstheamplitudeoftheloadingatzerofrequency,eFig.
2(b),whichimpliesthatthedynamicdesignisdominatedbythespatialdistributionoftheamplitudeoftheexternalloadingvector.
However,iftheloadingfrequencyisclortothevalueoftheoptimumfundamentaleigenfrequencyofthestructure,thedesignis
dominatedbythedynamicrequirement,anddrivesthefundamentaleigenfrequencyofthestructureasfarawayaspossiblefromthe
ntermediatevalueoftheloadingfrequency,theoptimumtopologyoftheinletisakindof
compromibetweentheloadingamplitudedominateddesignandtheeigenfrequencydominateddesign(.2(b-d)andFig.3).
5.2Minimumdynamiccompliancedesignofaplate-likestructure
Thixampleconcernsoptimumtopologydesignofaplate-likestructurewithsupportconditionsasshowninFig.4(a).Thefinite
elementmodelofthestructureconsistsof600(30×20×1)8-node3DbrickelementswithWilsonincompatibledisplacementmodelsto
-harmonic,concentratedtransverexternalloadp(t)=Pcosω
designobjectiveistominimizethedynamiccomplianceoftheplateforaprescribedloadingfrequencyω=ω
p
=80andavolume
fractionof50%forthegivensolidmaterial,whichhastheYoung’smodulusE=1011,Poisson’sratioυ=0.3andthespecificmassγ
m
=damentaleigenfrequencyoftheplateintheinitialdesign(eFig.4(a))isΩ
1
=61.6,i.e.,lessthanthegivenloading
zationofthedynamiccompliancedrivesthedesignawayfromtheresonancepointwhichimpliesacontinual
decreaofΩ
1
asshowninFig.4(b).Asaresult,thestaticcomplianceofthestructureincreasveryquickly(Fig.4(c)).Fig.4(d)
showsthatatiterationstep30,dicatescreationofarigidbody
vibrationmodeinassociationwiththefirsteigenfrequency,andthatthestructurecannoteffectivelysustainthestaticloadassociated
withω=0.
0
20
40
60
80
100
Iterationnumber
F
r
e
q
u
e
n
ci
e
s
ω=80
Prescribedloadingfrequency
Ω1
p
Firsteigenfrequency
(a)(b)
0
0.5
1
1.5
2
x10-6
Iterationnumber
D
y
n
a
mi
c
a
n
d
s
t
a
t
i
c
c
o
m
pl
i
a
n
c
e
DynamiccomplianceCfor
StaticcomplianceC
ω=ω=80
(ω=0)
p
s
d
(c)(d)
Figure4.(a)Admissibledesigndomain(a=3,b=2andc=0.1)withloadingandsupportconditions.(b)Iterationhistoryforthefirst
eigenfrequencyΩ
1
oftheplate(Ω
1
<ω
p
=80).(c)Iterationhistoriesforthedynamicandstaticstructuralcompliance(thelatter
correspondstothesameloadingamplitudebutfrequencyω=0).(d)Materialdistributionatiterationstep30.
5
50
60
70
80
90
100
110
120
130
Iterationnumber
Firsteigenfrequency
ω=ω=80
Prescribedloadingfrequency
F
r
e
q
u
e
n
ci
e
s
Initialloadingfrequencyω0
p
Ω1
51015202530
0
1
2
3
4
5
x10-7
Iterationnumber
DynamiccomplianceCfor
loadingfrequency
ω=ω=80
StaticcomplianceC(ω=0)
St
r
u
c
t
u
r
al
c
o
m
pl
i
a
n
c
e
p
d
s
(a)(b)
51015202530
0
1
2
3
4
5
6
x10
-7
Iterationnumber
D
y
n
a
mi
c
c
o
m
pl
i
a
n
c
e
ω=100
ω=80
ω=60
ω=0
p
p
p
p
ω
p
--Prescribedloadingfrequency
(c)ω
p
=80(d)
Figure5.(a),(b)Iterationhistoriesforthefirsteigenfrequencyoftheplate,theloadingfrequency,andthedynamicandstatic
compliances.(c)Optimumtopologies(50%volumefraction)forω
p
=80.(d)Iterationhistories(steps5to30)ofthedynamic
compliancesoftheplatesubjecttofourdifferentloadingfrequencies.
(a)ω
p
=0(staticloading)(b)ω
p
=60(c)ω
p
=80(d)ω
p
=100
zedtopologiesoftheplate-likestructureforfourdifferentloadingfrequencies.
Inordertoavoidsuchastaticallyweakdesign,,we
startoutthedesignproblemwithavalueω=ω0oftheloadingfrequencythatislowerthanthefirsteigenfrequencyΩ
1
oftheinitial
design,andwethenquentiallyincreaωuptoitsoriginallyprescribedvalueω=ω
p
=80(Fig.5(a)).Intheconvergedresult,a
structurewithminimizeddynamiccomplianceandimprovedstaticstiffnessisnowobtained(eFig.5(b,c)).Fig.5(d)showsthe
iterationhistoriesofthedynamiccomplianceofthestructureunderthesameloadingconditionsasFig.4(a)butwithfourdifferent
prescribedloadingfrequenciesω
p
=0(staticloading),ω
p
=60,ω
p
=80andω
p
=imumdynamiccomplianceincreasas
.6(a-d)givetheoptimumtopologiesoftheplate-likestructurecorrespondingtothe
oadingfrequencyincreas,theoptimumtopologyofthestructureisgraduallychanged
fromthedesignthatisdominatedbythestaticbehaviourofthestructure(ignmainlydependsonthespatialdistributionof
theloadingamplitude)totheonethatisdominatedbythedynamicbehaviourofthestructure(ncyrespon).Toillustratethis
point,wemayperformthetopologyoptimizationtaskofmaximizingthefundamentaleigenfrequencyoffreevibrationsoftheplate.
Hereby,wefindthattheoptimumvalueofthefundamentaleigenfrequencyisΩ
opt
=127.6,andthecorrespondingtopologyaswellas
theiterationhistoryofthefundamentaleigenfrequencyareshowninFigs.7(a)and(b).
6
60
70
80
90
100
110
120
130
Iterationnumber
F
u
n
d
a
m
e
n
t
al
ei
g
e
n
f
r
e
q
u
e
n
c
y
(a)Ω
opt
=127.6(b)
Figure7.(a)Optimumtopology(50%volumefraction)associatedwiththemaximumvalueΩ
opt
=127.6ofthefundamental
eigenfrequency.(b)Iterationhistoryofthefundamentaleigenfrequencyoftheplate.
Finallyletusconsideracawithaprescribedvalueoftheloadingfrequency,e.g.ω=ω
p
=150,whichishigherthanthe
optimumvalueofthefundamentaleigenfrequencyΩ
opt
=,asdiscusdearlier,toensureareasonablestatic
stiffnessofthedesign,weintroduceanupperbound8105−×=≤
ss
CC
forthestaticcomplianceC
s
intheformulationoftheproblem.
TheoptimumtopologyresultforthisproblemisshowninFig.8.
mtopology(50%volumefraction)forω
p
=150withanupperboundonthestaticcompliance,i.e.
ss
CC≤).
Fig.9(a)showstheiterationhistoriesofthedynamiccomplianceoftheplatesubjecttothehigherloadingfrequency(ω=ω
p
=
150)andfourdifferentupperboundconstraintsonthestaticcomplianceC
s
(associatedwiththesameloadingamplitudebutzero
frequency).ThegraphsshowthattheoptimumdynamiccompliancedecreasastheupperboundconstraintonC
s
.
9(b),iterationhistoriesareshownforminimumcompliancetopologydesignoftheplatesubjecttoagivenupperboundconstrainton
thestaticcompliance(7105.0−×=≤
ss
CC
)raphsshowthatforthehighloading
frequencydesigns,thedynamiccomplianceofatureis
oppositetothatobtainedbyminimumcompliancetopologydesignsubjecttoprescribedlowerormediumloadingfrequenciesshown
inFig.5(d).Asaconclusion,variationsoftheminimumdynamiccompliancewithrespecttodifferentloadingfrequenciesaredepicted
inFig.10(a),andFig.10(b)prentsthestaticcompliancesassociatedwiththeminimumdynamiccompliancedesignssubjectto
differentprescribedloadingfrequencies.
0
0.5
1
1.5
2
2.5
3
3.5
4
x10-7
Iterationnumber
D
y
n
a
mi
c
c
o
m
pl
i
a
n
c
e
o
f
s
t
r
u
c
t
u
r
e
C=4x10-7
s
C=3x10-7
sC=1x10-7
s
C=0.5x10-7
s
DynamiccompliancesCfor
ω=ω=150
anddifferentupperboundsonC
p
d
s
0
1
2
3
4
5
6
x10-7
Iterationnumber
D
y
n
a
mi
c
c
o
m
pl
i
a
n
c
e
o
f
s
t
r
u
c
t
u
r
e
DynamiccompliancesCfor
ω=ω=130
p
ω=ω=150
ω=ω=180
ω=ω=200
p
p
p
withconstraint
C<=C=0.5x10
s
s
-7
d
(a)(b)
Figure9.(a)Iterationhistoriesofthedynamiccompliancesoftheplatesubjecttoahighloadingfrequency(ω=ω
p
=150>Ω
opt
=
127.6)andfourdifferentupperboundconstraintsonthestaticcomplianceC
s
,i.e.
ss
CC≤
.(b)Iterationhistoriesofthedynamic
compliancesoftheplatesubjecttoagivenupperboundconstraintonC
s
(7105.0−×=≤
ss
CC
),forfourdifferentloadingfrequencies
ω
p
=130,ω
p
=150,ω
p
=180andω
p
=200,allofwhicharehigherthantheoptimumvalueofthefundamentaleigenfrequencyΩ
opt
.
7
0
0.5
1
1.5
x10-7
Loadingfrequencyω
Ωopt
Mi
ni
m
u
m
d
y
n
a
mi
c
c
o
m
pl
i
a
n
c
e
C
C=0.5x10s
-7
d
C<=C
s
s
Dynamicdesignwithout
constraintonC
s
Dynamic
Designwith
constraint
p
0
0.5
1
1.5
x10-7
Loadingfrequencyω
ΩoptSt
at
i
c
c
o
m
pl
i
a
n
c
e
C
of
mi
ni
m
u
m
d
y
n
a
mi
c
c
o
m
pl
i
a
n
c
e
d
e
si
g
n
s
C=0.5x10
s
-7s
C<=C
s
s
Dynamicdesignwithout
constraintonC
s
Dynamic
designwith
constraint
p
(a)(b)
Figure10.(a)MinimumdynamiccompliancesC
d
entloadingfrequencies.(b)StaticcompliancesC
s
(correspondtothesame
loadingamplitudebutzerofrequency)associatedwiththedesignsinFig.10(a)atifthe
prescribedloadingfrequencyisclotoorhigherthantheoptimumvalueΩ
opt
=127.6ofthefundamentaleigenfrequencyforthe
correspondingproblemoffreevibrationsoftheplate,anupperboundconstraint
ss
CC≤
isprescribedforthestaticcompliancein
ordertoavoidobtainingastaticallytooweakstructurefromthedynamicdesign.
sions
Problemsofstructuraltopologyoptimizationwiththeobjectiveofminimizingthedynamiccompliance(maximizingtheintegral
dynamicstiffness)ofcontinuumstructuressubjectedtotime-harmonicforcedvibrationwithprescribedfrequencyandamplitudeofthe
quencyω
p
oftheloadingisassumedtobesmallerthantheoptimumvalueofthe
ultsshowthatthedesignobjectiveofminimizingthe
dynamiccomplianceyieldsastructurewhoeigenfrequenciesoffreevibrationsaregenerallyfarfromthegivenexcitationfrequency
ω
p
ofthedynamicloading,whichimpliefficientavoidanceofresonancephenomenaandreductionofthevibrationlevelofthe
structure.
Itisfoundthatthedesignobjectiveoftheforcedvibrationproblemmaybeimplementedalongdifferentoptimizationpaths
accordingtodifferentlevelsoftheexternalexicitationfrequencyω
p
.Forcaswheretheloadinghasalowerormediumvalueofω
p
,
theminimumdynamiccompliancedesignprocessmaybedrivenbyacontinuationtechniquewheretheloadingfrequencyis
quentiallyincreadfromasufficientlylowinitialvalueuptoitsprescribedvalue,ω
p
.Thisproceduredeliversthedesiredresultthat
theoptimumstructureisassociatedwithminimumdynamiccompliancesubjecttotheprescribedloadingfrequency,andalsoimplies
aneffectiveimprovement(decrea)peralsorevealsthatiftheloadingfrequencyω
p
is
increadfromalowervalueuptotheoptimumvalueΩ
opt
ofthefundamentaleigenfrequencyofthecorrespondingfreevibration
problem,thentheoptimumtopologyofthestructureisgraduallychangedfromadesignthatisdominatedbythestaticbehaviourofthe
structure(i.e.,thedesignmainlydependsonthespatialdistributionoftheloadingamplitude)toadesignthatisdominatedbythe
dynamicbehaviourofthestructure(i.e.,itsfrequencyrespon).Finally,iftheloadinghasahighvalueoftheofexcitationfrequency
(i.e.,somewhatbeloworabovetheoptimumvalueΩ
opt
ofthefundamentaleigenfrequencyofthecorrespondingfreevibration
problem),wehavefounditexpedienttointroduceanupperboundconstraintonthestaticcomplianceinordertomaintainareasonable
staticstiffnessofthedesign.
nces
[1]øti.
.,1988,71:197-224
[2]ø.,1989,1:193-202
[3],ø.
.,1991,89:259-279
[4]øgyOptimization:Theory,MethodsandApplications,Springer,2003
[5]gyoptimizationofcontinuumstructures:.,2001,54(4):331-389
[6],.,1995,
121:259-280
[7]ndVibration,2002,253(3):687-709
[8],i,,.,
1999,17:208-218
[9].,2002,54:
1605-1622
[10]:-3,ThirdWorldCongress
ofStructuralandMultidisciplinaryOptimization,Buffalo,NY,May17-21,1999.
[11]isc.
Optim.,2000,19:85-92
8
[12]gicaloptimizationofcontinuumstructureswithdesign-dependentsurfaceloading-PartI:New
.,2004,27:151-165
[13]gicaloptimizationofcontinuumstructureswithdesign-dependentsurfaceloading-PartII:
.,2004,27:166-177
[14]y,.,1992,4:250-252
[15]ø.,1999,69:635-654
[16]alswithprescribedconstitutiveparameters:andStruct.,
1994,31:2313-2329
[17].,2000,20:2-11
[18]nsitivityanalysis:eProblemsinEngineering,1994,1:
71-105
[19]hodofmovingasymptotes−.,1987,
24:359-373
[20]Struct.,1982,18:
153-169
本文发布于:2022-11-24 02:26:54,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/9302.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |