Subdivisionandstability
REPORT
KaiyeHu
CollegeofShipbuildingEngineering
HarbinEngineeringUniversity,China,2007
CONTENTS
uction.................................................................................2
lframeworkofnewregulations...............................................2
2.1OverallIndexofSubdivision...........................................................2
2.2Localindicesofsubdivision...........................................................3
2.3RequiredSubdivisionIndex...........................................................4
hodtocalculatepi..............................................................4
3.1Probabilityoffloodingspacesforshipswithtransversubdivisiononly.....4
3.2Examples................................................................................7
hodtocalculatesi............................................................12
4.1Example................................................................................18
References...................................................................................22
1
uction
Theprobabilisticconceptofshipsubdivisionisbadontheprobabilisticasssment
ofstabilityforamultitudeofpossibledamagesprovidingtheprobabilityforashipto
isionisunderstoodasthepartitioningofa
ship’sinternalvolumeintowatertightcompartmentsinordertolimitthequantityof
ntssuchas
collision,,
however,mayalsoentertheshipduetomanyotherreasonssuchasstructuralfailure,
negligence,internalpipingfailure,firefighting,ntrolledfloodingoccurs,
then,withoutadequatesubdivision,the
shiptypicallyinvolveslossoflife,lossofcargo,andpossiblereleaofquantitiesof
eriousconquencesof
floodingcanbesubstantiallyreducedifadequatesubdivision,throughwell-placed
watertightbulkhead,isprovidedinthedesignofships.
InternationalMaritimeOrganization(IMO)providesmanyregulationsforjudgingthe
ship’dominantIMOtreatydocumentaffectingshipsubdivisionand
damagestabilityistheInternationalConventionfortheSafetyofLifeatSea(1974
SOLAS).Ithassofarbeenratifiedby131countriesandappliestomorethan98%of
wordmerchantshippingtonnage.
lframeworkofnewregulations
Asisknown,manyfactorsaffectingthefinalconquencesofshiphulldamageare
sreason
probabilityofcollisionsurvival(indexofsubdivision)istakenasameasureofship
safetyinthedamagedcondition-measureofmeritofaship're
twoindicesthatcanbepostulatedforjudgingtheeffectivenessofaship'ssubdivision:
zOverall(global)indexofsubdivision,reflectingtheaveragedegreeofsubdivision
forthewholeshipthatdenotesamean(conventional)probabilityofsurvivalforthe
wholeshipincaofaccidentalflooding.
zLocalindicesofsubdivisionoftwokindsof(notinuintheregulationsyet),
reflectingthedegreeofsubdivisionforindividualpartsoftheship,whichdenote
meanprobabilitiesofsurvivaleitherforthecasoffloodinginwhichagiven(wing,
ifany)compartmentisflooded,or-inwhichagiventransverbulkheadis
sreasonthediscussionisfocudonone-compartmentindicesof
merexpresstheso-called
one-compartmentstandardonthegroundoftheprobabilisticapproach;the
latter-thetwo-compartmentstandardsoregardedbythepractitioners.
2.1OverallIndexofSubdivision
Theactualdegreeofsubdivisionprovidedforashipisdeterminedbytheprobabilityof
dexshouldbe
:
RA>(1)
2
Theattainedsubdivisionindex"A"shallbecalculatedfortheshipbythefollowing
formula:
ii
spAΣ=forIi∈(2)
where:
"i"reprentachcompartmentorgroupofcompartmentsunderconsideration,
"p
i
"accountsfortheprobabilitythatonlythecompartmentorgroupofcompartments
underconsiderationmaybeflooded,disregardinganyhorizontalsubdivision,
"s
i
"accountsfortheprobabilityofsurvivalafterfloodingthecompartmentorgroupof
compartmentsunderconsideration,includingtheeffectsofanyhorizontalsubdivision.
“I”isthetofallfeasiblecasofflooding,comprisingsinglecompartmentsand
groupsofadjacentcompartments.
BecautheattainedsubdivisionindexAistheentireprobability,therefore
1=Σ
i
p(3)
thatis,thesumofprobabilitiesofallcasoffloodingequals1.
Thefactorsp
i
aregenerallynotaproblemfromthetheoreticalpointofviewasthey
tpurpoitis
nec
otherextremeisthefactors
i
cannotbederivedusingstatisticalmethodsonly,asit
accountsforstabilityandshipdynamicinthedamagedcondition.
2.2Localindicesofsubdivision
Theuoftheglobalmeasureofmeritaloneisnotsufficientforregulatorypurpo.
Twodifferentshipswiththesameoverallindexofsubdivisionareobviouslyofequal
overallsafetywithrespecttoflooding,althoughtheshipsmayhavequitedifferent
actualcapabilitiesforwithstandinghulldamageinsomepartsoftheirlengththatisnot
neutralforthequalityofsubdivision.
Topreventsuchanunsatisfactorysituation,thebasicglobalmeasureofmerit
(subdivisionindexA)shouldbesupplementbyitslocalcounterpartstheshowhowthe
probabilityofsurvivalisdistributedalongtheship’alindicesof
subdivisionwillindicatedirectlyifanypartoftheshipisleftwithunacceptable
vulnerabilitytoflooding.
Thistypeofrequirementisbestdonebytheuofso-called(partial)indicesof
subdivisionoftwokinds,givenbytheequations:
i
ii
jp
sp
A
∑
∑
=fornj,....2,1=,(4)
∑
∑
==
+
i
ii
jjjp
sp
AB
1,
for1,....2,1−=nj.(5)
TheA
j
quantitiesreprentone-compartmentindicesandB
j
two-compartmentindices
merreflectstheuniformityofsubdivisionalongtheshiplength,
3
whereasthelatterareameasureoftheship’sabilitytosurvivedamageinwayofa
bulkhead(leasttwoadjacentcompartmentsareflooded).Theyarealso
referredto,particularlyattheIMOcircles,astheminordamageindices,orthe
bulkheadindices.
2.3RequiredSubdivisionIndex
Thedegreeofsubdivisionprovidedforashipisdeterminedbyarequiredvalueofthe
probabilityofcollisionsurvival,
beobtainedonthebasisofnumericalvaluesoftheattainedindicesofsubdivision
laadoptedbytheIMOforpasngershipsisas
follows:
1500)4(
1000
1
++
−=
NL
R(6)
whereN=N
1
+N
2
isanassumednumberofpersonsonboardtheship,N
1
isthe
numberofpersonsforwhomlife-boatsareprovided,N
2
isatotalnumberofpersons
onboardtheshippermittedtocarryinexcessofN
1
,andListhesubdivisionlengthof
theshipinmeters.
Fordrycargoships,IMOadoptedinitiallythesameequationasforpasngerships,
butwiththeomissionofN,modifyingitsubquentlyto,arriving
finallyattheformula:
3/1)001.0(LR=
3/1)0009.0002.0(LR+=(7)
hodtocalculatep
i
3.1Probabilityoffloodingspacesforshipswithtransversubdivisiononly
Toanalysthesimplestcaofsubdivision,itisonlynecessarytoconsiderthe
locationandlengthofdamageinthelongitudinaldirection,assumingnolongitudinal
andhorizontalwatertightstructuraldivisionxist.
WiththenondimensionaldamagelocationLx/=ξandnondimensionaldamage
lengthLl/=λ,asdefinedinFigure1,allpossibledamagescanbereprentedby
pointsinanisoscelestriangle,showalsointhisfigure,whobaandheightare
iangleisthusthedomainofthetwo-dimensionalrandomvariable
(λξ,).ThelengthLisunderstoodasasubdivisionlengthoftheship.
4
Figure1:DomainsG
i
correspondingtodamagesopeningsinglecompartment
(triangles)andgroupsofadjacentcompartment(parallelograms)
Sincethelocationandsizeofthedamagesarerandomvariables,itisnotpossibleto
r,theprobabilityoffloodinga
spacecanbedeterminediftheprobabilityofoccurrenceofcertaindamageisknown,
babilityoffloodingaspace,
boundedbyundamagedwatertightstructuraldivisions,equalstheoccurrenceofall
,inmathematicalterms
∫=
i
G
ii
fdGp(8)
inwhichthejointdistributiondensityfisintegratedoverthedomainG
i
enclosing
zonesinthetrianglereferredtoabove,correspondingtodamagesopeningthespace
sityfunctionfistermedinprobabilitytheoryasthe
probabilitydensityfunction(pdf).Itdenoteshowthetotallikelihoodoftheshipbeing
damaged,equalto1,isdistributedoverthewholedamagedomain.
AlldamagesthatopensinglecompartmentsoflengtharereprentedinFigure
1bypointsintriangleswith;thusthetrianglesarethedomainsudfor
i
l
LlJ
ii
/=
5
spointsinany
parallelogramreprentalldamagessimultaneouslyopeningthecompartments
,theparallelograms
arethedomainsudforcalculatingtheprobabilitiesofsimultaneousfloodingof
groupsofcompartments.
Thefollowingrelationshipscanbedirectlyinferredfromequation(8)andFigure1
fortheprobabilityoffloodinganarbitrarynumberofadjacentcompartments:
forcompartmentstakenbypairs:
etcpppp
pppp
i
i
,
3223
2112
−−=
−−=
(9)
forcompartmentstakenbygroupsofthree:
etcppppp
ppppp
i
i
,
33423234
22312123
+−−=
+−−=
(10)
forcompartmentstakenbygroupsoffour:
etcppppp
ppppp
i
i
,
343452342345
232341231234
+−−=
+−−=
(11)
wheretheindicesassignedtopindicatetheprobabilityoffloodingasingle
compartmentwhonondimensionallengthJcorrespondstothatofagroupof
rwords,thefactorattributableto
acompartmentgroupisobtainedbyacombinationoffactorscorrespondingto
adehereoflinearityofintegration.
i
p
i
p
Itisclearfromequation(8)andFigure1thatforanydistributiondensityfatthe
range
max
,0Jthefactorisalwayspositiveforasinglecompartmentandapair
ofadjacentcompartments,whereisthemaximumnondimensionaldamage
oupoftheormoreadjacentcompartmentsthefactorsmayequal
zeroifthenondimensionallengthofsuchagroupwithouttheoutermost
rword,thefactor,ifthe
wholedomaincorrespondingtosuchagroupliesabove
i
p
max
J
max
J0=
i
p
i
G
maz
J=λ,wherethe
densityfunctionfvanishes.
Ascanbeenfromequation(9-11),inordertocalculatethefactorforagroup
ofadjacentcompartments,itissufficienttoknowdetailedformulatefordetermination
oftheprobabilitypoffloodingasinglearbitrarycompartment,asthefactoris
insuchformulate,the
i
p
i
p
6
two-dimensionaldensityfunction),(λξfisindispensableandthisfollowsdirectly
fromequation(8).Thisdensityfunctioncanbederivedfromdamagestatistics.
3.2Examples
ernow
probabilityoffloodingatransvercompartment(ofanylengthandlocationalongthe
ship’slength)aca,theexpression
forthefactorcanbeobtainedstraightaway,byintegrationofthedensityfunction
foverthetriangledomain,correspondingtoagivencompartment,asshownin
Figure1.
i
p
i
p
i
G
First,considerauniformdensityfunctionf=constattheentiredomainG(thebig
triangleinFigure1).
Theintegraloffovertheentiredomainequals1,thatis
1=⋅Gf(12)
fromFigure1,weknowthattheareaoftheentiredomain5.011
2
1
=⋅⋅=G,sof=2,in
suchaca,equation(8)yieldsimmediatelythefollowingexpressionforthe
factor:
i
p
222JGdGfdGp
i
GG
i
ii
====∫∫(13)
/=
Letustrytofindnowmarginaldistributions,whicharenormallyobtainedfromthe
redistributionsobtainedbydisregardingtheotherrandom
variable(s),i.e,ematicalterms,
theyareobtainedbycalculatingtheelementaryareaorvolumerelatedtoonevariable.
Hence,inourcathemarginaldistributionofdamagelengthisgivenby
)1(2)(
2/1
2/
λξλ
λ
λ
−==∫−
fdf(14)
whereasthemarginaldistributionofdamagelocationisgivenby
⎪
⎪
⎩
⎪
⎪
⎨
⎧
∈−=
∈=
=
∫
∫
−ξ
ξ
ξξλ
ξξλ
ξ
22
0
2
0
1,5.044
5.0,04
)(
fd
fd
f(15)
7
Figure2:Marginaldistributionsincaofauniformpdfattheentiredomain
ascanbeen,thedensityfunctionfisintegratedoverahorizontalcross-ction
whileinthecondca,
marginaldistributionsare
een,theyfollowtheshapeofthedomainperceived
fromtherespectiveaxis,withamultiplicationfactorequalto2.
era
uniformdistributiondensityfinsideastripofwidth,his
strip(i.e.,for
max
J
max
J>λ)thedensityfunctionvanishes(i.e.,0=f).Whereasf=const
gure3,wecangettheareaofthestrip(trapezoid):
2
maxmaxmax
max
2
1
)
2
11
(JJJ
J
G−=⋅
+−
=(16)
considertheequation(12),thedensityfunctionis:
12
maxmax
)
2
1
(−−=JJf(17)
8
Figure3:Uniformdistributionatpartofthedomain
obviously,f>2becauthedensityfunctionisdistributednowoverasmallerareathan
tillf=const,therefore,whereisactiveareaofthe
ii
Gfp⋅=
i
G
,)(
2
1
2
1
,
2
1
2
max
2
max
2
otherwiJJJG
JJifJG
i
i
−−=
<=
(18)
thereforethefactorisgivenby
i
p
⎪
⎪
⎪
⎩
⎪
⎪
⎪
⎨
⎧
−
−
≤
−
=
otherwi
J
y
JJfor
J
y
p
i
1
2
12
1
2
max
max
max
2
(19)
whereisanormalizedlengthofthecompartment.
max
/JJy=
Themarginaldistributionofdamagelengthisgivenby
max
,0)1()(Jforff∈−⋅=λλλ(20)
wherefisgivenbyequation(17).
Hereisanexampleaboutmarginaldistribution,considerauniformprobability
densityfunctionf=constforatwo-dimensionaldamage,whonondimensional
lengthλ
max
.IfthenondimensionallengthequalsJ,assumeJ
max
=et
9
themarginaldistributionsofthenon-dimensionaldamagelengthanddamagelocation.
Followingisthesolution.
Fromequation(17),wecanget
2
maxmax2
1
1
JJ
f
−
==4.15282(21)
forthemarginaldistributions∫−−⋅==2
1
2
)1()(
λ
λ
λξλffdf,andbecauJ
max
=0.28,
so
max
)1(15282.4)(Jandf<−=λλλ(22)
Wecanalsoget:
⎪
⎪
⎪
⎩
⎪
⎪
⎪
⎨
⎧
−∈−=
−∈⋅=
∈⋅⋅=
=
∫
∫
∫
−)1(2
0
max
0
maxmaxmax
2
0
max
]1,
2
1
1[,)1(2
)
2
1
1,
2
1
(
)
2
1
,0[2
)(max
ξ
ξ
ξξλ
ξλ
ξξλ
ξ
Jffd
JJJffd
Jffd
fJ
(23)
Figure4:marginaldistribution1
10
Figure5:marginaldistribution2
Figure4andFigure5aregraphsofthemarginaldistributionsbaontheequation
(22)andequation(23).
Abouttheoverallandlocalindicesofsubdivision,wehaveanexample:Suppoa
shiphastransverbulkheadsatthefollowingpointsξ:0.05,0.20,0.35,0.50,0.65,
0.80,torsp
i
ands
i
fortheship(J
max
=0.24)areasfollows:
No.12345678
p
i
0.01270.04450.06230.08020.08910.08910.08910.0358
single
comprt.
s
i
11111111
p
i
0.02800.05160.06870.08440.08580.08580.0673
pairsof
comprt.
s
i
10.950.900.800.760.901
p
i
0.00240.00350.00460.00510.00510.0049
groups
oftriple
s
i
0.1500000.12
Table1:Thefactorsp
i
ands
i
forthisship
wecancheckwhethertheprobabilitiesformacompleteprobabilityfromtable1,the
resultsareshowninTable2.
Singlecompartment.∑1i
p=0.5028∑1ii
sp=0.5028
Pairsofcompartments.∑2i
p=0.4716∑2ii
sp=0.416098
Groupsoftriple∑3i
p=0.0256∑3ii
sp=0.00948
Sumup:∑∑i
p=1∑ii
sp=0.919846
Table2:Results
11
becau=1,sothisisacompleteprobability.∑i
p
FromTable2,wecangettheattainedindexofsubdivision:
A=∑ii
sp=0.919846(24)
WecanfindthemostvulnerablepartofthisshipfromTable3,badonthe
equation(4):
i
ii
jp
sp
A
∑
∑
=fornj,....2,1=.
FromTable3,wecanfindwhenn=5,hasthesmallestvalue,thispartisthe
mostvulnerablepartoftheship.
j
A
WecanalsofindthemostvulnerablebulkheadfromTable4,badontheequation
(5):∑
∑
==
+
i
ii
jjjp
sp
AB
1,
for1,....2,1−=nj.
n12345678
ii
sp0.012700.044530.062340.080160.089060.089060.089060.03582
i
p0.012700.044530.062340.080160.089060.089060.089060.3582
j
A
0.95210.93710.89840.8502
0.8096
0.84200.92900.96006
Table3:values
j
A
n1234567
ii
sp0.027990.048950.061830.067570.065270.077290.06734
i
p0.027990.051530.068700.084460.085880.085880.06734
j
B
0.93210.85770.80510.7182
0.6798
0.81300.9410
Table4:values
j
B
whenn=5,hasthesmallestvalue,sothispartisthemostvulnerablebulkhead.
j
B
hodtocalculates
i
Thes
i
factorisdifficulttoget,becauwecan‘tgets
i
factorfromstatisticalmethods.
ProfessorPawlowskidevelopedaveryufulmethodtocalculates
i
factor:TheStatic
EquivalencyMethod(SEM),nowI’llintroducethismethod.
TheStaticEquivalencyMethod(SEM)isbadonanumberofinsightsand
esumedthatitistheaccumulationofwateronthevehicledeckthat
12
caustheshiptocapsize,ratherthanthebasicdamagedstabilityintheflooded
conditionasmeasuredbytheSOLAScriteria.
Therequiredcapsizevolume(orweight)ofwaterondeckisassumedtobethat
whichwouldcautheshiptololltoitsangleofmaximumGZinthefloodedcondition.
Anyadditionalheelwiththisvolumeondeck,oranyadditionalvolumeatthesame
heelangle,llberesistedbyasmaller
,theshipwillinevitablycapsize.
Thedepthofwaterondeckatthecriticalconditioncorrespondstoanelevation
abovethemeanexternalalevel,andthilevationcan,inturn,becorrelatedwith
cwaveenergyis,ineffect,transformedinto
potentialenergy.
Theprocesscanbetreatedquasi-statically,asthetimeframesassociatedwith
ceffectsdo
needtobeaccountedforbothinthestabilitycalculationapproachandinthe
correlationofwaterelevationandwaveheight.
Thestabilitycalculationsneededtopredictcapsizewatervolumecanbe
und
arerelativelyeasytounderstandbutdifficulttoapply,whileothersaresimpletou
report,I’llintroducethreemethods.
a):Elevatedwater
Figure6:Stabilityofadamagedro-roveslwithariofwateronthecardeck
Theelevationofwaterabovealevelatthecriticalpointforcapsizecanbeeasily
visualizedasafunctionofheelangleφ,usingthelostbuoyancyorconstant
eenfromFigure6,therightingmomentisproduced
stoneiscreatedbyweightoftheship,passingthroughits
centerofgravityG,balancedbybuoyancyforceDwhichpassthroughthecenterof
13
ercoupleiscreatedbyweightoftheelevatedwaterondeck,
balancedbyachangeinbuoyancy
duetosinkageoftheshipdT,whichisappliedatthecenterofflotationofthe
damagedwaterline(thecentroidofthewaterplanewithoutthepartoccupied
bythefloodedwater).Hence,therightingmomentisgivenasfollows:
el
p
el
C
WLD
F
MlpGZD
elel
=−⋅(25)
Where:
D–displacement(weight)oftheship
∇–volumedisplacementoftheship.
GZ–rightingarmcalculatedbytheconstantdisplacementmethod,allowingforfree
floodingofthevehicledeck;
el
p–weightofwaterelevatedabovealevel=;
el
gv
el
l–heelingleverduetoelevatedwaterondeck,equaltothehorizontaldistance
betweenthecenterofflotationandcenterofgravityofelevated
water.
WLD
F
el
C
Theadditionalamountofwaterondeck,elevatedabovealevel(shadingin
Figure6)issuchthattheresultantrightingmomentM=ng
Equation(25)throughoutbythedensityofawater,thefollowingisobtained:
GZlv
elel
⋅∇=(26)
whereisvolumeofwaterelevatedabovealevel.
el
v
Equation(26)iquation
venheelangle,
therighthandsideoftheequation,GZ⋅∇,isknownfromroutinestability
calculations,whichallowandthushtobefoundprecilybyaniterative
ecalculationsthesinkageoftheshipdTisneededthatcanbe
foundfromachangeinvolumedisplacement:
el
v
WLdel
AvdT/=(27)
whereisthemeanwaterplanearea,excludingthepartoccupiedbythewater.
WLd
A
b)Addedwater
14
Thecalculationprocedurefortheheelingmomentcanbesomewhatmodifiedby
takingintoaccounttheentireamountofwaterondeckabovethewaterline
(beforesinkage).Theheelingmomentinsuchacaiscreatedbyweightofthe
additionalwaterondeck,abovethewaterline(darkandlightgreyinFigure
7),passingthroughitscentreofgravity,balancedbychangeofbuoyancydueto
ngeofbuoyancyisappliedatthecentroidofthe
undamagedlayer(includingthepartoccupiedbythefloodedwaterondeck,denoted
bylightgrey,butwithoutthedamagedpartbelowthedeck)cutoffbywaterlinesWL
and
0
WL
ad
p
0
WL
ad
C
ad
F
0
WL
Figure7:Alternativewayofheelingmomentcalculation
AsthesinkagedTistypicallyverysmall,thecentroidcoincideswiththecentre
clearthatislargerthanbytheamountofwatercontainedbetweenthetwo
waterlines,theircentresofgravityandarenotthesame,thelocationsof
heless,sinkageof
sonisthatweaddazero
forceconsistingofweightofwaterondeckandchangeofbuoyancycontained
ad
F
WL
F
ad
p
el
p
ad
C
el
C
WL
F
WLd
F
15
treason
0
WL
adadelel
lplp=,and,
whereisweightoftheadditionalwaterondeckabovethewaterline,is
theheelingleverduetotheadditionalwaterondeck,equaltothehorizontaldistance
betweenthecentreofflotationofwaterline(undamagedabovethecar
deck)andthecentreofgravityoftheadditionalwaterondeck,measured
perpendicularlytothesameaxisofrotationasbefore.
adadelel
lvlv=
ad
p
0
WL
ad
l
WL
F
0
WL
ad
C
Conquently,alltheexpressionsfortheheelingmomentbadontheelevated
waterintheforegoingequationscanbereplacedbythobadontheadditional
kagedTisgivenbytheequation:
WLad
AvdT/=(28)
whereisthedamagedwaterplanearea,includingthepartoccupiedbythe
waterondeck.
WL
A
Thesolutionofequation(26)venheelangleφthe
right-handsideofequation(26)-GZ⋅∇isknown,forwhichthewaterlineis
alsoknown,includingstaticcharacteristicssuchasdraught,trim,thearea
(or)lastquantitieshavetobedeterminedforthe
shipwiththeundamaged(ordamaged)ther
hand,theleft-handsideofequation(26)-isafunctionof
0
WL
WLd
A
WL
A
WLd
F
elel
lv
h
′
-theelevationof
iredwaterelevationis
determinedwhenequation(
0
WL
h
′
GZ⋅∇)issatisfied,andthatcanbeeasilyfound
y,thewaterelevatedwithrespecttoalevelh,ofprime
importanceforthedamagedsafety,isfoundfromasimplerelation:,
wherethesinkageoftheshipisdefinedbyequation(27)or(28).Intheequations
(or)isknownfunctionof
dThh−
′
=
el
v
ad
v
h
′
.
c)Totalwater
Mostfrequently,however,thecalculationsareperformedbyuofvarioussoftware,
atprentmainlybyNAPA,wherespaceonthevehicledeckistreatedlikean
undamagedtank,aca,theheeling
momentiscreatedbyweightofthetotalamountwaterondeck(darkandlight
greyinFigure8),passingthroughitscentreofgravity.
3
p
3
C
16
Figure8:Calculationofheelingmomentbytypicalsoftware
Theentireweightoftheship,includingweightofwaterondeck,isbalancedbythe
entirebuoyancyforcebelowtheactualwaterplane,includingbuoyancy
givenbytheundamagedvehicledeck(lightgreyinFigure8)Theentirebuoyancy
forcepassthroughthecentreofbuoyancyfortheshipdamagedonlybelow
,theresultingmoment(restoring)isgivenby:
33
pDD+=
3
B
3333
lpGZDM−=(29)
whereistherightingarmforafreelyfloatingship,withtheundamagedvehicle
deck,isweightoftotalwaterondeck,andheelingleverduetowaterondeck,
equaltothehorizontaldistancebetweencentreofgravityoftheintactshipGand
centreofgravityofwaterondeck,measuredperpendicularlytotheaxisof
shipatequilibrium,theaboveequationyields
3
GZ
3
p
3
l
3
C
3333
GZVlv=(30)
whereistotalvolumeofwaterondeck,andisvolumedisplacementoftheship
withtheundamagedvehicledeck.
3
v
3
V
Theoutcomeofthecalculationsforgivenamountofwaterondeckistheangleof
lollφ,trim,waterhead,freeboardattheopeningattheheelangle(depthofthe
deckedge),volumeoftheelevatedwater,gvolumeofelevatedwater
h
f
el
v
17
thesinkageoftheshipdTcanbefoundfromequation(27).Next,runningsoftware
again,thetraditionalrightingleverGZcanbefound,correspondingtothedamaged
waterplane(beforeparallelsinkage)withfreefloodedwateronthevehicledeck,
asshowinFigure6.
0
WL
4.1Example
Hereisanexampleofabox-shapedro-rovesl,wecanfindit’sfactorsandthe
(mean)ndimensions
forthisbox-shapedro-roveslareasfollows:
LengthL...............................................................143.00m
BeamB................................................................27.50m
HeightH8.00m
DraughtT5.75m
BlockcoefficientC
B
...........................................................1
KG(=z
G
)...............................................................12.00m
suppothattheshipwithamidshipscompartmentfloodedoflengthl=16,5mand
withpermeability1=μ.Assumethatthefloodedcompartmentbelowthecardeck
hasnodoublesidesandnodoublebottom,whereasthevehicledeckextendsover
bovethecardeckhasnosidecasings(thisshipis
prentedinFigure9).
f
h
δT
N
F
WL
B
WL
WL
0
Z
C
ad
D
p
ad
h'
N
G
Figure9:Stabilityoftheshipwithariofwateronthecardeck
First,
rightingarmGZforabox-shapeveslisgivenbytheequation:
GZ=r
0
m(φ)–asinφ (31)
18
inequation(31),r
0
istheinitialmetacentricradius,a=z
G
–z
B
isaheightofthecentre
ofgravityoverthecentreofbuoyancyatanuprightpositionoftheship,andthe
functionm(φ),reprentingthestabilityofform,isgivenasfollows:
m(φ)=(1+½tan2φ)sinφfor φ≤φ
1
,(32)
m(φ)=6t(cosφ–tsinφ)–8t3/2cos2φ/√sin2φfor φ∈〈φ
1
,φ
2
)(33)
wheret=F/B,Fisthefreeboard,tanφ
1
=2t,tanφ
2
=H2/(2BF).
Whentheshipflooded,wecangetthedamageddraught:
dam
T
m
l
L
LT
T
dam
5.6
5.16143
143*75.5*
=
−
=
−
=(34)
so,theinitialmetacentricradiusr
0
is:
m
T
B
r
dam
696.9
5.6*12
5.27
*12
22
0
===(35)
and
m
T
zdam
B
25.3
2
==(36)
mzza
BG
75.825.312=−=−=(37)
wecanalsogett,φ
1
andφ
2
fromthefollowingequation:
05455.0
5.27
5.1
===
B
F
t(38)
()0
1
23.62arctan=⋅=tφ(39)
0
2
2
8.37)
2
arctan(==
BF
H
φ(40)
knowingtheinitialmetacentricradiusr
0
,a,φ
1
andφ
2
,fromequation(31)-equation
(33),wecandrawit’sGZcurve,showninFigure10.
19
Figure10:GZcurve
Fromthiscure,wecanfindtheangle
max
φ,whereamaximumGZoccurs,and
vanishangle:,.Wecanalsofindthemaximumrightingarm:
m.
0
max
75.6=φ081.9=
van
φ
014.0
max
=GZ
Thewidthofthecardeckabovethewateris:
398.26
tan
2
==
α
BF
bm(41)
inequation(41),
180
max
πφ
α
⋅
=istheradianof
max
φ.
so,thewidthofthecardeckbelowthewateris:
102.1=−=bBcm(42)
themergedfreeboardis:
125.3tan=⋅=αbFe
merged
m(43)
wecancalculatethedraughtofthedeckedgerelativetoWL
0
:
130.0sin
0
=⋅=αcdm(44)
theareaofWL
0
is:
36.3521
cos0
=
⋅−⋅
=
α
blBL
A
WL
m2(45)
thecentroidofWL
0
fromtheship’ssideis:
777.13
cos)(
)2/(2/2
=
⋅⋅−⋅
−⋅⋅−⋅
=
′
αblBL
bBblBL
F
WL
m(46)
thecentroidofWL
0
fromtheverticallineNN(showninFigure9)is:
20
762.13tan
0
=⋅−
′
=αdFF
WLWL
m(47)
thewidthofWL
0
abovethecardeckis:
110.1cos/==
′αccm(48)
thecentroidofWL
0
abovethecardeckrelativetonormalNNis:
540.0tan
2
1
0
=⋅−
′
⋅=
′αdcF
c
m(49)
so,thewidthofthefreesurfaceofaddedwateris:
183.5/
0
=⋅
′
=
′′
ddccm(50)
tocalculatethevolumeoftheaddedwater,wecanuthefollowingequation:
99.213)(
2
)(
0
=−⋅
′′
+
′
⋅
=dd
ccL
V
ad
m3(51)
wecangettheheightofthecentroidofaddedwateraboveWL
0
:
289.0
3
2
0=
−
⋅
′′
+
′
′′
+
′
=
′
dd
cc
cc
h
ad
m(52)
andthecentroidofaddedwaterrelativetonormalNN:
743.1
0
0=
′
⋅
+
′
=
c
ad
ad
F
d
dh
Fm(53)
theheelingmomentduetotheaddedwateris:
712.2571)(=−⋅=
adWLadad
FFVMnm(54)
so,thesinkageoftheshipafterdamageis
061.0/
0
==
WLad
AVTδm(55)
theelevatedwaterheightis:
415.0)(
0
=−−=Tddhδm(56)
themeancriticalastateis:
4.3)
085.0
(3.1
1
==
h
H
s
m(57)
thefactorscangetfromthefollowingequation:
990.0)0148.06301.24095.27494.0(3/123=++−=xxxs(58)
inequation(58),.4/
s
Hx=
21
References
ski,M:calUniversityofGdansk,
2004
skiMandVassalosD:RiskCharacterizationoftheRequiredIndexRintheNew
dingsofthe8thInternationalShipStability
Workshop,Istanbul,October2005.
ationalMaritimeOrganization:SubdivisionandStability,PartBofChapterⅡ-1in
theInternationalConventionfortheSafetyofLifeatSea,SOLAS1974,IMO,London.
ck,ski,:FloodingProtectionofRo-RoFerries,Pha
ortCanada,March1998.
22
本文发布于:2023-01-04 17:36:02,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/91964.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |