DerOpen-Access-PublikationsrverderZBW–Leibniz-InformationszentrumWirtschaft
TheOpenAccessPublicationServeroftheZBW–LeibnizInformationCentreforEconomics
Nutzungsbedingungen:
DieZBWräumtIhnenalsNutzerin/Nutzerdasunentgeltliche,
räumlichunbeschränkteundzeitlichaufdieDauerdesSchutzrechts
beschränkteeinfacheRechtein,dasausgewählteWerkimRahmen
derunter
→/dspace/Nutzungsbedingungen
nachzulendenvollständigenNutzungsbedingungenzu
vervielfältigen,mitdenendieNutzerin/derNutzersichdurchdie
ersteNutzungeinverstandenerklärt.
Termsofu:
TheZBWgrantsyou,theur,thenon-exclusiverighttou
thelectedworkfreeofcharge,territoriallyunrestrictedand
withinthetimelimitofthetermofthepropertyrightsaccording
tothetermsspecifiedat
→/dspace/Nutzungsbedingungen
Bythefirstuofthelectedworktheuragreesand
declarestocomplywiththetermsofu.
zbwLeibniz-InformationszentrumWirtschaft
LeibnizInformationCentreforEconomics
Güth,Werner;Kocher,Martin;Sutter,Matthias
WorkingPaper
Experimental'beautycontests'withhomogeneous
andheterogeneousplayersandwithinteriorand
boundaryequilibria
DiscussionPapers,InterdisciplinaryRearchProject373:QuantificationandSimulationof
EconomicProcess,No.2001,45
Providedincooperationwith:
Humboldt-UniversitätBerlin
Suggestedcitation:Güth,Werner;Kocher,Martin;Sutter,Matthias(2001):Experimental
'beautycontests'withhomogeneousandheterogeneousplayersandwithinteriorandboundary
equilibria,DiscussionPapers,InterdisciplinaryRearchProject373:Quantificationand
SimulationofEconomicProcess,No.2001,45,urn:nbn:de:kobv:11-10049913,
/10419/62714
Experimental’BeautyContests’withHomogeneous
andHeterogeneousPlayersandwithInteriorand
BoundaryEquilibria
WernerGüth∗,MartinKocher†,MatthiasSutter∗,†
June26,2001
Abstract
Westudybehaviorinexperimentalbeautycontestswith,first,boundaryand
interiorequilibria,and,cond,homogeneousandheterogenoustypesofplayers.
Wefindquickerandbetterconvergencetothegame-theoreticequilibriumwith
interiorequilibriaandhomogeneousplayers.
JEL-classificationcode:C72,C91
Keywords:beautycontestexperiments,individualbehavior]
∗Humboldt-UniversityofBerlin,DepartmentofEconomics,InstituteforEconomicTheoryIII,Span-
dauerStr.1,D-10178Berlin,Germany.e-mail:gueth@
†UniversityofInnsbruck,InstituteofPublicEconomics,Universitaetsstras15,A-6020Innsbruck,
Austria.e-mail:@;@isthecorresponding
authorathisInnsbruckaddress.
1Introduction
The’beauty-contest’game-whichwaslikenedbyKeynes(1936)toprofessionalinvest-
mentactivity-hasinspiredmanyexperimentalstudies(e,forinstance,Nagel,1995,
DuffyandNagel,1997,Hoetal.,1998).Allbeauty-contestgameshaveincommonthat
imple
formthewinneristhedecisionmakerwhonumberisclosttoq∅(s),where∅(s)is
theaverageofallguessandqisarealnumberannouncedatthebeginningofthegame.
Duetoitsfavorableenvironmentanditssimplicity,thebeauty-contestgameor’guessing
game’,asitissometimesalsocalled1,hasmainlybeenudtoanalyzereasoningprocess
rmore,ithasgainedmoreandmore
importanceintestingvariouslearningtheories(e,forinstance,CamererandHo,1999).
Onereasonforthepopularityofthebeauty-contestgame,apartfromitssimplicity,is
itsobviousremblancewithdecisionmakinginfirreasonmight
betheflexibilityinttinggameparametersandmodifyingequilibriumchoicestocreate
theobviousmodificationsof
thebasicgamehavealreadybeenexplored.2Thelatterstatementdoesnotonlyholdtrue
forparameterchanges,butalsofortheeffectsofdifferentsubjectpools(al
studentexperimentsorreadersofnewspapers,eNageletal.,2000)orofinstitutional
changeslikedistinguishingsingleandteamplayers(KocherandSutter,2000).Acommon
featureofallhithertoperformedbeauty-contestgameexperimentsisthatonlythewinner
(i.e.,theoneclosttothebestguess)isrewardedandsubjectgroupsarehomogeneous
(i.e.,thebestguessisthesameforallparticipants).Nearlyallpriorstudies,furthermore,
relyonboundaryequilibria.
,inour
versionofthebeauty-contestgamepayoffarticipantreceives
amonetaryendowmenttopayafinewhosizeisdeterminedbyhowfarthechon
,weexploreandcomparebehaviorbothwith
teraregeneratedbyaddingaconstanttothe
1Thethirdterminuis’averagegame’,introducedbyMoulin(1986).
2ForanovervieweNagel(1999).
1
,inadditiontothecommoncawithhomogeneous
groupswhereallplayershavetoguessthesametargetnumberinagroupofndecision
makersweintroduceheterogeneousgroups,wheren
2
decisionmakershavetoguessq
i∅(s)
andn
2
decisionmakershavetoguessq
j=i∅(s).
Thechont-upremblesfinancialdecisionmuchmorethanthebasicbeauty-contest
,e.g.,reasoningprocessassociatedwithpickingstocksinstockmarkets.
Returnsare,obviously,continuousandnotdichotomousasinallpriorbeauty-contest
games,boundaryequilibriararelyexistandheterogeneousgroupsaretheruleandnot
theexception(e.g.,shortversuslongpositions),whichhasalsobeenneglectedinbeauty-
contestgames,modificationtothebasicgameallowstoexploreveral
lly,firstroundguessinthestandarddesignarequitefar
awayfromtheboundaryequilibrium(eHoetal.,1998).Bycomparingguessin
boundaryandinteriorequilibirumenvironmentswewanttoanalyzewhetherdeviations
lanationforsuchadifferencein
theresultsofthetwotreamtentsmightlieintheexistenceofadesiretochoointerior
insteadofextreme,boundarystrategies(eRubinsteinetal.,1997).Theintroduction
ofheterogeneoustypesofplayersallowstoinvestigatewhetheramorecomplexsituation
inducesparticipantstothinkharderaboutotherplayers’behavior,and,thus,promotes
our
paymentschemetobemoreappropriateifonelikensbeauty-contestgamestofinancial
decisionmaking,butwedonotexpectittoalterresultsqualitatively,althoughdeviation
fromoptimalityshouldbeslightlysmaller.
Inction2weintroduceour2x2-design,theequilibriaofourbeautycontestsandour
resultsaredescribedinction4beforeconcludinginction5.
2Theexperimentalbeautycontests
Letn(>2)denotethenumberofplayersi=1,...,ninthegamewhoallchooareal
number
s
i∈Si
=[0,100]fori=1,...,n.
2
Foranystrategyvectors=(s
1
,...,s
n
)let
∅(s)=1
n
nXi=1
s
i
eralformofthepayofffunctionu
i
(s)isgivenby
u
i
(s
i
)=C−c|s
i−qi
[∅(s)+d]|
where|r|denotestheabsolutevalueoftherealnumberr;disaconstantaddedtothe
averagenumber∅(s)andq
i∈(0,1)isthequotaof[∅(s)+d]whichdeterminesplayer
i’eridoesnotguesscorrectly,hemustpayafineofc(>0)forevery
unitofdeviationwhichhecanpayoutofhispositive(monetary)
2×2-factorialdesignofourexperiment(Table1)distinguishesd=0(leftcolumn)and
d=50(rightcolumn)aswellasq
i
=1/2foralli=1,...,n=4(upperrow)andq
i
=1/3
foronehalfandq
i
=2/3fortheotherhalfofthe4players(lowerrow).
quotaq
i
d=0d=50
q
i
=1/2∀is∗
i
=0,∀is∗
i
=50,∀i
q
i
=1/3fori=1,2s∗
i
=0s∗
i
=100/3ifq
i
=1/3
q
i
=2/3fori=3,4fori=1,...,4s∗
i
=200/3ifq
j
=2/3
Table1:The2×2-factorialdesignandequilibria.
Theequilibrias∗
i
Appendix,weshowhowthesolutionscaneitherbejustifiedastheuniqueequilibriumof
eachgameorbyrepeatedeliminationofstrictlydominatedstrategies.
Ourmainhypothescanbesummarizedasfollows:3
riorequilibrium(d=50)issuppodtoyieldsmallerdeviationsofthe
guessfromthegame-theoreticequilibriumthanaboundaryequilibrium,since
participantsoftentrytoavoidextremechoices(e,forinstance,Rubinsteinetal.,
1997).
3Ourcontinuouspaymentschemeshouldnotcaudifferentbehaviorthanunderthestandardwinner-
takes-allrule(e,forinstance,BolleandOckenfels,1990,Cubittetal.,1998).
3
ucingheterogeneityofplayersshouldinducesubjectstothinkmorethor-
oughlyaboutthestrategiesoftheotherplayertypesinordertomakeareasonable
scomplexsituation,withhomogeneousplayers,itmightnotbethat
o-
fore,fromabehavioralpointofview,wewouldexpectparticipantsinheterogeneous
groupstobeclortoequilibriumthanparticipantsinhomogeneousgroups.
3ExperimentalProcedure
TheexperimentswereruninDecember2000andJanuary2001attheHumboldt-University
allparticipantswerestudentsattendinganundergraduatecourinmi-
croeconomics4,,for
mostparticipantsitshouldhavebeentheirfirstexperiencewithexperimentaleconomics.
Thesoftwareofthecomputerizedexperimenthasbeendevelopedwiththehelpofz-Tree
(Fischbacher,1998).
Inea
averagetimeneededtorunassionwas40minutes(about15forreadinginstructions
andaskingprivatelyforclarificationsand25minutesforplaying10rounds).Participants
weredividedintotwo(matching)retoldthattheyarematchedrandomly
tmentswithheterogeneous
groupssubjectsweretoldthatineachroundtherewouldbetwosubjectsofeachtypein
atinspiteofrepeatedinteraction,theaverageofassion’smatching
groupsqualifiesasanindependentobrvation.
Wetc=0.05DMandC=2DMinthepayofffunction.5Table2showsaverage
earningsparatelyforthefirstandthecondfiveroundsforplayerswithq
i
=1/2
(intreatmentswithhomogeneousgroups),orq
i
=1/3andq
i
=2/3,respectively(in
4Thetopicofthiscourisgeneralequilibriumtheoryanddidnotyetintroducegametheoretic
concepts.
5Ifasubjectwasmorethan40unitsawayfromhertargetvalue,ppenedto
5outof160subjectsinthefiubjectswereinformedthatlosscouldbebalancedand
gainsaccumulatedintheroundstofollow.
4
caofheterogeneousgroups).Ingeneral,weobrvethatsubjectarnedonaverage
alwaysmoreinthecondfitsinhomogeneousgroups
withtheinteriorequilibrium(d=50)earnedmost,namely18.41DMintotal(outof
amaximumof20DM).Subjectswithq
i
=2/3andtheboundaryequilibrium(d=0)
earnedthesmallestaverageamount.
d=0d=50
quotas1−56−101−56−10
q
i
=1/28.169.268.659.76
q
i
=1/3,7.559.108.109.39
q
i
=2/36.848.707.348.64
eearnings(inDM)pertypeofplayer
4Results
Figures1and2showtheaverageguessineachtreatmentinthecouroftheexperiment
aswellasthecorrespondingequilibria.6Intheheterogenoustreatmentswesplitthedata
forthetwotypesofplayerswithq
i
=1/3andq
i
=2/3,een,
guessconvergesteadilytowardstheequilibrium7,inparticularinourtreatmentswith
interiorequilibria(d=50).
Wecanconfirmourfirsthypothesis,statingthatinteriorequilibriatriggermoreequilibrium-
tingthishypothesis,werelyontheaverages
ofrounds1to5,rounds6to10,ingtohomogeneousgroups
wefindthatgroupswithaninteriorequilibrium(d=50)aresignificantlyclortothe
equilibriumthangroupswithaboundaryequilibrium(d=0).8Heterogeneousgroups
6Adatafilewithssion,respectivelytypeaveragesisincludedintheAppendix.
7Deviationsfromequilibriumgetsignificantlysmallerfromroundttoroundt+1inanyca(con-
sideringbothhomogeneousandheterogeneousgroups),withtheexceptionofround9to10withd=0,
andround3to4and9to10withd=50(Wilcoxonsignedrankstest,p<0.05).
8p<0.1forrounds1-5;p<0.05forrounds6-10,and1-10,respectively(U-test,two-sided).
5
TreatmentAverages(d=0)
0
10
20
30
40
round
q=1/2
q=1/3
q=2/3
s*=0
Figure1:
TreatmentAverages(d=50)
20
40
60
80
round
q=1/2
q=1/3
q=2/3
s*(1/2)
s*(1/3)
s*(2/3)
Figure2:
6
guesstheequilibriumsolutionmoreclolywhentheequilibriumisinterior,however,this
holdsonlyforthefirstfiverounds.9
Furthermore,exactequilibriumguessaremuchmorefrequentintheinteriorequilibrium
treatmentswithhomogeneousgroups.49.25%ofallguessinthetreatmentwithhomoge-
neousgroupsandaninteriorequilibriumareexactlyattheequlibrium(s∗
i
=50),whereas
thecorrespondingfigureincaoftheboundaryequilibrium(s∗
i
=0)is27.75%.10The
frequencyofequilibriumchoicesis,however,
thatinNagel(1995),whoalsohadhomogeneousgroupsandeitherq=1/2orq=2/3,
only3outof115subjectschoexactlyzero(theequilibriumchoice).Weethecontinu-
ouspaymentschemeasthedrivingforcebehindthehighfrequencyofequilibriumchoices.
Lookingatgroupswithheterogeneousplayerswefindequilibriumchoicestobemuchless
frequent(7.5%incaofaninteriorequilibriumand3.5%withboundaryequilibrium,
respectively)andnosignificantdifferenceinequilibriumchoicesbetweenbothtypesof
specttoprofits,subjectsfacinganinteriorequilibriumearn-ceteris
paribus-significantlymorethanthofacingaboundaryequilibrium.11
Astoourcondhypothesis,namelythatheterogeneityofplayersshouldtriggermore
thoroughdeliberationsand,thus,moreequilibriumlikedecisions,wetestwhetherdevi-
ationsfromequilibriumaresmallerinheterogeneousthaninhomogeneousgroups,given
thateitherd=0ord=rytoourexpectations,wefindthathomogeneous
=0,ssionaverages
withhomogeneousgroupsaresignificantlysmaller(and,thus,clortoequilibrium)than
averageguessinheterogeneousgroupsineachofthefirstvenrounds,intheaverages
ofthefirstfiverounds,andintheaverageoveralltenrounds.12Inourd=50treatments,
homogeneousgroupsareclortotheequilibriumthanheterogeneousgroupsinallrounds
butrounds2and4.13We,therefore,believethatthecomplexitygeneratedbytwotypes
9p<0.05(U-test,two-sided).
10Thedifferenceisstatisticallysignificantforthefirstroundandtheaverageofthefirstfiverounds,
takingssionsasindependentobrvations(p<0.05,U-test,two-sided).
11p<0.05(U-test,two-sided).
12p<0.05forrounds2,5,and6,andfortheaverageofrounds1-5.p<0.1inallothercas.(U-test,
two-sided).
13p<0.05forrounds5,7,8,9,and10,andfortheaverageofrounds6-10.p<0.1inallothercas.
(U-test,two-sided).
7
ofplayersmakesitmoredifficulttoapproachequilibriumbehaviorandthatsubjectsdo
notreasonmorethoroughlywhentherearedifferenttypesofgroupmembers.
Next,weexplorewhethertherearesystematicdifferencesbetweenthedifferenttypesof
playersinheterogeneousgroups.q
i
=1/3-playersmightconvergefastertothegame-
theoreticequilibriumbecauofthefastereliminationofweaklydominatedstrategies.14
InFigure1(d=0)wefindthat,onaverage,guessofq
i
=2/3-playersarehigher
thanthoofq
i
=1/r,takingssionaveragesasthe
onlyindependentobrvationswedonotfindasignificantdifferencebetweentheguess
ofbothtypesofplayers,neitherinanysingleroundnorconsideringtheaveragesof
ingtoFigure2(d=50)weethataverageguessof
q
i
=2/3-playersareslightlyfurtherawayfromequilibriumthanthoofq
i
=1/3-players.
Yet,thedifferenceisdrivenbyasinglesubjectwhohaddifficultiesinunderstandingthe
experimentandwhochonumbersintherangefrom0to10inallrounds.15Therefore,
deviationsfromequilibrium(33.33and66.67,respectively)doalsonotdifferbetween
playertypesincaofd=,therefore,concludethatheterogeneityofplayers
doesaffectgroupbehaviorbyincreasingdeviationsfromequilibrium,comparedwith
r,heterogeneityaffectsbothtypesofplayersand
bothtypesdonotsystematicallydifferintheirdeviationsfromoptimality.
5Conclusion
Wehaveexploredbehaviorinfourdiff
findthatdecisionsareclortothegame-theoreticequilibriumwhentheequilibriumis
itioningroupsofhomogeneousplayersalsopromotesconvergencetothe
mplexitythroughheterogeneousplayers,however,isdetrimentalfor
profitsaswellasforconvergencetotheequilibrium.
14SeetheAppendixfordetails.
15Thissubjectevenendedupwithaloss.
8
References
[1]Bolle,FriedelandOckenfels,Peter(1990):Prisoners’dilemmaasagamewithincom-
lofEconomicPsychology,March1990,11(1),pp.69-84.
[2]Camerer,ColinandHo,Teck-Hua(1999):Experience-weightedattractionlearning
etrica,July1999,67(4),pp.827-74.
[3]Cubitt,RobinP.;Starmer,ChrisandSugden,Robert(1998):Onthevalidityofthe
mentalEconomics,1(2),pp.115-132.
[4]Duffy,JohnandNagel,obustnessofbehaviourinexperimental
’beautycontest’icJournal,November1997,107(445),pp.1684-700.
[5]Fischbacher,U.(1999):Z-tree:Zurichtoolboxforreadymadeeconomicexperiments,
WorkingpaperNo.21,InstituteforEmpiricalRearchinEconomics,Universityof
Zurich.
[6]Ho,Teck-Hua;Camerer,ColinandWeigelt,eddominanceanditer-
atedbestresponinexperimental’p-beautycontests’.AmericanEconomicReview,
September1998,88(4),pp.947-69.
[7]Keynes,eraltheoryofinterest,:
Macmillan,1936.
[8]Kocher,MartinandSutter,Matthias(2000):Whenthe’decisionmaker’matters:
Individualversusteambehaviorinexperimental’beauty-contest’sion
paper2000/4,InstituteofPublicEconomics,UniversityofInnsbruck.
[9]Moulin,k,NewYorkPress,1986.
[10]Nagel,linginguessinggames:an
EconomicReview,December1995,85(5),pp.1313-26.
[11]Nagel,yonexperimentalbeautycontestgames:Boundedratio-
:Budescu,David;Erev,IdoandZwick,Rami(eds.).Games
andhumanbehavior:y,Lawrence
ErlbaumAssoc.,Inc.,1999,pp.105-42.
9
[12]Nagel,Romarie;Bosch-Domènech,Antoni;Satorra,AlbertandGarcía-Montalvo,
,two,(three),infinity:Newspaperandlabbeauty-contestexperiments.
Workingpaper,UniversitatPompeuFabra,Barcelona,2000.
[13]Rubinstein,Ariel;Tversky,AmosandHeller,Dana(1997):Naivestrategiesincom-
:Albers,.(eds).Understandingstrategicinteraction:Es-
berg,Springer,pp.394-402.
10
Appendix
briumstrategiesinthebeautycontestgames
Ford=0thebestreplytos∗
j
=0forj=iisobviouslys∗
i
=0duetoq
i
<
provesthatthebehaviorintheleftcolumnofTable1definesastrictequilibriuminboth
itsuniquenessassumeanequilibriums∗with∅(s∗)>ebest
reply-condition
s∗
i
=q
i∅(s∗)fori=1,...,n
itfollowsthat
nXi=1
s∗
i
=∅(s∗)
nXi=1
q
i
fori=1,...,n
or
n=
nXi=1
q
i
dueto
nXi=1
s∗
i
=n∅(s∗).
Thiscontradictsq
i
<1fori=1,...,,ford=0thebehaviorinTable1istheonly
equilibrium.
Solvingthecad=0byrepeatedeliminationofstrictlydominatedstrategiesproceeds
bythefollowingalgorithm:
•Setmj
=100forj=1,...,n.
•Foralli=1,...,nallstrategiessi
>q
i
n
nPj=1
m
j
areeliminated.
•Denotefori=1,...,nbym0
i
themaximals
i
remainingafterthepreviousstep.
Substitutefori=1,...,nthepreviousm
i
bym0
i
andrepeatthecondstep.
Inthefirsteliminationstepthixcludesallstrategiess
i
>q
i·100fori=1,...,
thequenceofthem
j
-valuesaremonotonicallydecreasinguntiltheyfinallyreachm
j
=0
forj=1,...,,however,thatinthelowerrowofTable1ford=0thisimplies
amuchfastereliminationforq
i
=1/3-playersthanforq
i
=2/3-players:Aq
i
=1/3-
playerwouldimmediatelyeliminatealls
i
>100/3whereasaq
i
=2/3-playerstartsby
eliminatingonlys
i
>200/tailscanbefoundinTableA1illustratingindetail
theimplicationsofthefirstfoureliminationsteps.
11
numberofeliminatedstrategies
eliminationq
i
=1/2,d=0q
i
=1/2,d=50d=0d=50
stepfori=1,...,4fori=1,...,4q
i
=1/3q
i
=2/3q
i
=1/3q
i
=2/3
1s
i
>50s
i
<25,s
i
>75s
i
>100
3
s
i
>200
3
s
i
<50
3
s
i
<100
3
s
i
>50
2s
i
>25s
i
<37.5,s
i
>62.5s
i
>50
3
s
i
>100
3
s
i
<25s
i
<50
s
i
>125
3
s
i
>125
3
3s
i
>12.5s
i
<43.75,s
i
<56.25s
i
>25
3
s
i
>50
3
s
i
<350
12
s
i
<350
6
s
i
>450
12
s
i
>450
6
4s
i
>6.25s
i
<46.875,s
i
>53.125s
i
>25
6
s
i
>25
3
s
i
<550
12
s
i
<550
6
s
i
>1700
48
s
i
>1700
24
.
.
.
∞si
>0s
i=50si
>0s
i
>0s
i=100
3
s
i=200
3
TableA1:Repeatedeliminationofstrictlydominatedstrategiesforour2×2-factorial
design
Ford=50oneprovesinthesamewaythatthebehaviorintherighthand-columnof
Table1istheunique(strict)ationofstrictlydominatedstrategies
i
=1/2fori=1,...,4,forinstance,notonly
thestrategiess
i
>75butalsothowiths
i
<25havetobeeliminatedinthefirststep.
Fortheasymmetriccaplayersiwithq
i
=1/3eliminatecorrespondinglys
i
>50and
s
i
<50/3inthefirsteliminationstepwhereasforq
i
=2/3onlythestrategiess
i
<100/3
canbeeliminatedinthefiainillustrateshowtheasymmetriccaforces
participantstoengageinquitedifferentconsiderationswhenanticipatingotherswitha
differentquotaandwhenanticipatinganotherwiththesamequotawhodeliberations
shouldbesimilartoone’sown.
ctions
Thewritteninstructionsdifferonlyinthedescriptionofthequotas(either1/2forall4
playersortwoplayerswith1/3andtwowith2/3)aswellasoftheconstant(whichwas
onlymentionedincaofd=50).Weprovidethetranslatedinstructionsford=0and
erinstructionsareavailableuponrequest.
12
Rulesoftheexperiment(originallyinGerman)
Welcometoourexperimentandthankyouforparticipating!
rsonofthisgrouphastochooanumber
x
i
betweenzero(0)andonehundred(100).
isnotnecessarytochooaninteger,however,numberswithmorethantwodecimalsare
excluded.
Yourpayoffintheexperimentdependsonhowcloyournumberistoatargetnumber.
Thecloryournumbertoatargetnumber,thehigheryourpayoff.
numbers
oftypeAandtypeBparticipantsarediffreatypeAyourtargetnumberis
one-third(factorf
A
)re
atypeByourtargetnumberistwo-thirds(factorf
B
)oftheaverageofallfournumbers
choninyourgroup.
Thepayoffofeachrounddependsonthedifferencebetweenyourchonnumberandthe
chonnumberandthetargetnumberareidentical,youreceive
(roundedup)unitdifferenceleadstoadeductionof0.05DM.
Formally,yourperroundpayoffiscalculatedasfollows:
payoffperround=2.00−0.05|x
i−fA,BPx
j
4|.
,though,
pyour
type(eitherAorB)inallrounds.
Aftereachroundyoureceiveinformationonthegroupaverage,yourtargetnumberand
yourpayoff.Payoffsareaccumulatedoverallroundsandpaidincashandprivatelyat
theendoftheexperiment.
13
file
Sessionaverages
Guess
SessionRounds
q1--56--101--10
d=010,518,568,154,313,131,980,660,360,240,206,447,221,584,40
20,520,576,982,320,540,060,010,006,251,025,366,092,534,31
30,523,4412,306,522,881,310,990,770,420,310,329,290,564,92
40,521,1912,847,764,602,341,041,050,4012,583,739,753,766,75
50,530,1819,7116,8012,529,456,064,252,461,460,5517,732,9610,34
d=50
10,535,6342,1946,0153,6550,0249,8349,7249,5849,7749,8445,5049,7547,62
20,535,9439,2542,8445,5048,1549,0849,9650,3450,2750,3442,3450,0046,17
30,547,3855,6948,1249,3848,6849,3649,3649,7249,9749,8849,8549,6649,75
40,542,6352,4447,7048,6348,9349,0349,5149,7449,7849,7748,0649,5648,81
50,549,0648,9449,4549,8749,8749,9050,0050,0050,0050,0049,4449,9849,71
d=01*29,9825,8624,7720,6112,226,383,401,860,910,4122,692,5912,64
2*26,5012,917,115,062,892,241,541,141,070,6710,891,336,11
3*22,1424,9816,7512,3910,207,616,073,072,4714,9717,296,8412,06
4*44,4931,9125,7719,7216,4217,8011,679,598,286,8527,6610,8419,25
5*41,1224,3911,527,315,192,541,430,700,320,0717,911,019,46
d=50
1*36,6339,9634,9038,1236,8437,0237,5938,3740,2541,1437,2938,8738,08
2*57,0054,3454,3652,7253,9653,3650,8151,2350,1651,2754,4851,3752,92
3*49,6350,2250,7251,6151,8251,4651,0650,4450,1450,0350,8050,6350,71
4*46,8152,7048,2450,3948,4450,4450,4146,6049,4450,1049,3249,4049,36
5*52,5656,5655,4962,3650,9453,3851,7252,3951,7852,8155,5852,4154,00
*Averagesofbothtypesinheterogeneousgroups
Typeaveragesinheterogeneousgroups
Session
q1--56--101--10
d=010,3323,4614,5818,4710,496,953,801,420,730,440,1214,791,308,04
10,6736,5037,1431,0830,7417,498,955,382,991,390,6930,593,8817,23
20,3331,2511,568,486,383,252,532,251,631,380,9112,181,746,96
20,6721,7514,255,753,752,531,950,830,650,760,449,610,925,26
30,3311,5211,7014,7511,289,146,234,231,601,560,7611,682,877,28
30,6732,7538,2518,7513,5011,259,007,904,543,3929,1822,9010,8016,85
40,3333,7523,3922,1616,0511,098,108,656,968,196,3921,297,6614,47
40,6755,2340,4329,3823,3921,7527,5014,6912,218,387,3034,0314,0224,02
50,3336,3824,907,654,503,381,880,990,510,220,0715,360,738,05
50,6745,8623,8915,3910,127,003,201,870,880,430,0820,451,2910,87
d=50
10,3345,2536,6623,8029,4328,3629,0329,6928,7229,2528,7232,7029,0830,89
10,6728,0043,2546,0046,8145,3145,0145,5048,0151,2553,5641,8748,6745,27
20,3349,5038,6937,4735,2736,1735,5634,0133,9133,9033,8339,4234,2436,83
20,6764,5070,0071,2570,1771,7571,1767,6268,5466,4268,7269,5368,4969,01
30,3345,0035,9635,7236,4736,2235,5434,6033,8533,3232,7237,8734,0035,94
30,6754,2564,4865,7266,7567,4267,3967,5267,0466,9667,3363,7267,2565,49
40,3340,1336,3333,7533,3332,3033,3133,3026,1032,9132,4635,1731,6133,39
40,6753,5069,0862,7367,4564,5967,5867,5167,1165,9767,7463,4767,1865,32
50,3340,5035,0035,8651,8434,5034,8833,9335,4034,9134,2539,5434,6737,10
50,6764,678,175,172,967,471,969,569,468,771,471,6370,1670,89
14
本文发布于:2023-01-04 15:05:13,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/91287.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |